Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов (РЗЭ) при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов РЗЭ.
В связи с восстановлением редкоземельной промышленности в России актуальной становится задача попутного извлечения редкоземельных элементов (РЗЭ) в черной, цветной и редкометальной промышленности, а также вовлечение в переработку нетрадиционного сырья. Особенностями данных источников являются, как правило, низкие содержание РЗЭ и сложный химический состав. В этой связи, многие отработанные промышленностью технологии концентрирования и извлечения РЗЭ оказываются непригодными и малопроизводительными. Кроме того, выбор метода извлечения РЗЭ зачастую связан с невозможностью изменения химического состава технологических полупродуктов в замкнутых технологиях.
Сорбционное извлечение РЗЭ представляется наиболее целесообразным на этапе первичного концентрирования. Серьезной проблемой при сорбционном извлечении РЗЭ из технологических и продуктивных растворов с pH=0,5÷2,5 является присутствие в них большого количества железа(III) и Al, т.к. известно, что такая среда является неселективной для отделения железа(III) и Al (как наиболее мешающих примесей) от РЗЭ, как на стадии сорбции, так и на стадии десорбции [Большаков К.А. Химия и технология редких и рассеянных элементов. ч. 2. - М.: Высшая школа. 1976. - 360 с.]. На практике задача извлечения РЗЭ из таких растворов решается путем гидролитического осаждения железа(III) и Al щелочными агентами, с дальнейшей организацией процесса извлечения РЗЭ из осветленных растворов, или из гидратных пульп, что нашло отражение в способе [Мурсалимова М.Л., Строева Э.В. Определение равновесных параметров сорбции ионов иттрия и лантана из минерализованных растворов и железосодержащих пульп на карбоксильный катионит КБ-4 гелевого типа. // Вестник ОГУ, №5, 2006, с. 86-90]. К недостаткам этого способа следует отнести большие потери РЗЭ (20÷25%), вследствие соосаждения с гидроксидами железа(III) и Al использование крепких растворов осадителей, большой их расход, образование трудноперерабатываемых сбросных вод.
Другой способ - это предварительное восстановление в растворе с pH=0.5÷2.5, наиболее мешающей примеси железа(III) до железа(II) - железной стружкой, мочевиной, сульфитом натрия и т.д. При такой организации процесса, выбор сорбционных систем со значительными коэффициентами разделения железа(II) и РЗЭ(III) гораздо шире [А.с. 2070595 Способ извлечения церия / Шевчук Иван Алексеевич, Симонова Тамара Николаевна, Рокун Антонина Николаевна // Опубл. 20.12.1996]. Недостатком этого способа является изменение химического состава технологических растворов с большим расходом реагентов-восстановителей.
В то же время, на ряде производств поддержание высокой концентрации растворенного железа(III) продиктовано технологической необходимостью, т.к. его присутствие способствует повышению выщелачивающей (окислительной) способности растворов (Е.А. Толстов Физико-химические геотехнологии освоения месторождений урана и золота в "кызылкумском регионе. - М.: МГГУ. 1999. - 331 с.). Поэтому разработка способа селективного извлечения РЗЭ из растворов с pH=0.5÷2.5, содержащих железо(III) и Al без изменения химического состава растворов, является чрезвычайно актуальной задачей.
Известен способ (Смирнов Д.И., Молчанова Т.В., Водолазов Л.И., Пеганов В.А. Сорбционное извлечение редкоземельных элементов, иттрия и алюминия из красных шламов. // Цветные металлы, - 2002. - №8. - с. 64-69), в котором извлечение РЗЭ из технологического раствора pH=0.5÷2.5, осуществляется путем сорбции на гелевом сульфокахионите КУ-2. Полученный после осаждения черновой концентрат содержит %: РЗЭ - 1; железо - 2,0-2,2; алюминий - 15-18; вода - 82. Далее предлагается стадия переосаждения с целью доведения чернового концентрата РЗМ до товарной продукции 30-40%.
Основными недостатками данного способа является малая избирательность емкости сульфокатионита по сумме РЗЭ, а, следовательно, и сложная последующая операция доведения чернового концентрата РЗЭ до товарной продукции. Эти недостатки приводят к необходимости применения дополнительного оборудования - реакторов для растворения гидратов, фильтров для фильтрации большого количества полупродуктов, а также к дополнительному расходу достаточно дорогого реагента - щелочи при выщелачивании алюминия. Кроме того, степень извлечения РЗЭ данным способом достаточно низка - выход составляет 60%.
Из известных аналогов наиболее близким к заявленному изобретению по совокупности признаков и назначению является способ извлечения РЗЭ из сернокислых растворов выщелачивания (Ogata Т. Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid / T. Ogata, H. Narita, M. Tanaka // Hydrometallurgy. - 2015. - №152. - P. 178-182.) - принят за прототип.
Способ, по прототипу, включает сорбцию РЗЭ из растворов комплексообразующим ионитом, содержащим в качестве активного компонента монодигликольамид (МоноДГА), десорбцию РЗЭ раствором серной кислоты с концентрацией 20-100 г/дм3, с получением десорбированного комплексообразующего ионита, который направляют на повторную сорбцию РЗЭ и раствора десорбции, который направляют на дальнейшую переработку.
К недостаткам способа следует отнести невысокую емкость комплексообразующего ионита по РЗЭ, что делает дальнейший процесс раствора десорбции малорентабельным.
В основу изобретения положена задача по созданию высокорентабельного технологического процесса извлечения РЗЭ из технологических и продуктивных растворов.
При этом техническим результатом заявляемого изобретения является увеличение степени извлечения РЗЭ и повышение избирательности комплексообразующего ионита по РЗЭ.
Заявляемый технический результат достигается тем, что способ извлечения РЗЭ согласно изобретению включает сорбцию РЗЭ на комплексообразующем ионите, десорбцию РЗЭ раствором серной кислоты с концентрацией 20-100 г/дм3, с получением десорбированного комплексообразующего ионита, который направляют на повторную сорбцию РЗЭ и раствора десорбции, который направляют на дальнейшую переработку, отличающийся тем, что сорбцию РЗЭ проводят на комплексообразующем ионите, содержащем в качестве активного компонента смесь МоноДГА и бис[(трифторметил)сульфонил]имид-1-бутил-3-метилимидазолия (C4mimTf2N) в мольном соотношении МоноДГА : C4mimTf2N = 2÷5:1.
Введение в фазу комплексообразующего ионита дополнительного реагента C4mimTf2N позволяет повысить как избирательностью комплексообразующего ионита к РЗЭ, так и степень извлечения РЗЭ. Повышение избирательности и степени извлечения комплексообразующего ионита при введении C4mimTf2N достигается за счет того, что преимущественно РЗЭ образуют с C4mimTf2N ассоциаты, которые за счет своей гидрофобности легче образуют комплексное соединение с МоноДГА.
Осуществление заявляемого способа подтверждается следующими примерами.
Пример 1. Навески комплексообразующего ионита, состава: МоноДГА : C4mimTf2N = 3:1, МоноДГА : гексафторфосфат 1-бутил-3-метилимидазолия (C4mimPF6)=3:1, МоноДГА : 1-(2-этилгексил)-3-метилимидазолия (C8mimTf2N)=3:1 в количестве 10 см3 каждая, помещали в пластиковые колонки диаметром 10 мм и высотой 100 мм и пропускали через них определенный объем технологического раствора подземного выщелачивания урана. После завершения пропускания технологического раствора подземного выщелачивания урана через колонки пропускали раствор серной кислоты с концентрацией 30 г/дм3. Растворы анализировали на скандий, торий, железо, алюминий до и после пропускания через колонки. По разности концентраций и емкости ионитов анализировали степень отмывки.
Пример 2. Навески комплексообразующего ионита, состава: МоноДГА : C4mimTf2N с мольным соотношением компонентов (1:1, 2:1, 3:1, 5:1, 10:1) в количестве 10 см3 каждая, помещали в пластиковые колонки диаметром 10 мм и высотой 100 мм и пропускали через них определенный объем технологического раствора подземного выщелачивания урана. После завершения пропускания технологического раствора подземного выщелачивания урана через колонки пропускали раствор серной кислоты с концентрацией 30 г/дм3. Растворы анализировали на скандий, торий, железо, алюминий до и после пропускания через колонки. По разности концентраций и емкости ионитов анализировали степень отмывки.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО РАСТВОРА | 2018 |
|
RU2684663C1 |
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО РАСТВОРА | 2016 |
|
RU2674717C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ КРАСНЫХ ШЛАМОВ | 2015 |
|
RU2603418C1 |
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО РАСТВОРА | 2015 |
|
RU2613238C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ СУММЫ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ РАСТВОРОВ | 2010 |
|
RU2457266C1 |
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА СКАНДИЯ | 2018 |
|
RU2731951C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ТЕХНОЛОГИЧЕСКИХ И ПРОДУКТИВНЫХ РАСТВОРОВ И ПУЛЬП | 2010 |
|
RU2484162C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО ПРОДУКТИВНОГО РАСТВОРА | 2015 |
|
RU2612107C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ ПРОДУКТИВНЫХ РАСТВОРОВ ПРИ СЕРНОКИСЛОТНОМ ВЫЩЕЛАЧИВАНИИ УРАНОВЫХ РУД | 2018 |
|
RU2674527C1 |
СПОСОБ ПЕРЕРАБОТКИ СБРОСНЫХ СКАНДИЙСОДЕРЖАЩИХ РАСТВОРОВ УРАНОВОГО ПРОИЗВОДСТВА | 2016 |
|
RU2622201C1 |
Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов (РЗЭ) при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов РЗЭ. B способе извлечения РЗЭ сорбцию РЗЭ проводят на комплексообразующем ионите, содержащем в качестве активного компонента смесь МоноДГА и бис[(трифторметил)сульфонил]имид-1-бутил-3-метилимидазолия (C4mimTf2N) в мольном соотношении МоноДГА : C4mimTf2N = 2÷5:1, что приводит к более эффективной последующей переработке растворов десорбции с получением более чистых и богатых по РЗЭ концентратов. Техническим результатом заявляемого изобретения является увеличение степени извлечения РЗЭ и повышение избирательности комплексообразующего ионита по РЗЭ. 2 табл., 2 пр.
Способ извлечения редкоземельных элементов (РЗЭ) из технологических и продуктивных растворов, включающий сорбцию РЗЭ на комплексообразующем ионите, десорбцию РЗЭ раствором серной кислоты с концентрацией 20-100 г/дм3 с получением десорбированного комплексообразующего ионита, который направляют на повторную сорбцию РЗЭ, и раствора десорбции, который направляют на дальнейшую переработку, отличающийся тем, что сорбцию РЗЭ проводят на комплексообразующем ионите, содержащем в качестве активного компонента смесь МоноДГА и бис[(трифторметил)сульфонил]имид-1-бутил-3-метилимидазолия (C4mimTf2N) в мольном соотношении МоноДГА : C4mimTf2N = 2÷5:1.
OGATA, Т | |||
Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid, T | |||
OGATA, H | |||
NARITA, M | |||
TANAKA, Hydrometallurgy, N152, 2015, p | |||
Способ получения кодеина | 1922 |
|
SU178A1 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ТЕХНОЛОГИЧЕСКИХ И ПРОДУКТИВНЫХ РАСТВОРОВ И ПУЛЬП | 2010 |
|
RU2484162C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ СУММЫ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ РАСТВОРОВ | 2010 |
|
RU2457266C1 |
СПОСОБ ИЗБИРАТЕЛЬНОГО ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СОЛЯНОКИСЛЫХ РАСТВОРОВ | 1993 |
|
RU2062810C1 |
ПАТЕНТНО- -qТЕХННчш:ля ''"ЬИйЛИОТЕКА | 0 |
|
SU272533A1 |
Фурменный прибор доменной печи | 1974 |
|
SU522234A1 |
МНОГОКАМЕРНЫЙ ПРОБООТБОРНИК | 0 |
|
SU265547A1 |
ИНЪЕКЦИОННЫЙ ГЕЛЕВЫЙ ПРОДУКТ | 2018 |
|
RU2783125C2 |
Авторы
Даты
2017-11-09—Публикация
2016-11-28—Подача