СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ КРАСНЫХ ШЛАМОВ Российский патент 2016 года по МПК C22B59/00 C22B3/24 

Описание патента на изобретение RU2603418C1

Изобретение относится к металлургии цветных металлов, а именно к извлечению скандия и редкоземельных элементов (РЗЭ) из отходов глиноземного производства - красных шламов (КШ).

Известен способ извлечения скандия при переработке бокситов на глинозем, включающий выщелачивание КШ серной кислотой с концентрацией не менее 100 г/дм3, фильтрацию нерастворимого остатка, сорбцию скандия из фильтрата с использованием фосфорсодержащего сорбента КФП-12, последующую десорбцию скандия раствором карбоната аммония (NH4)2CO3 с концентрацией 120 г/дм2, осаждение концентрата скандия из раствора десорбции в виде труднорастворимого соединения раствором AlF3 (15 г/дм3) при 90°С. Извлечение скандия из раствора десорбции в концентрат - 97%. Сквозное извлечение скандия из исходного КШ составило 72.3% (А.с. СССР №1711499, Кл. С22В 59/00, опубл. 10.05.2000).

Недостатком известного способа является сложность его осуществления вследствие высоких затрат на регенты (приготовление концентрированного раствора серной кислоты, применение сорбента, крупнотоннажное производство которого отсутствует), а также высоких энерго- и трудозатрат при получении концентратов, связанных с фильтрацией и промывкой осадков. Кроме того, указанный способ не позволяет извлекать редкоземельные элементы.

Другой известный способ извлечения скандия из красных шламов глиноземного производства включает в себя сернокислотное выщелачивание скандия из красного шлама 10,0÷13,5%-ной в виброкавитационном режиме, фильтрацию пульпы с получением сернокислого раствора, сорбцию скандия из сернокислого раствора на фосфорнокислом амфолите, промывку сорбента 1,0 H раствором HCl, десорбцию скандия раствором Na2CO3 с концентрацией 150 г/дм3 с получением элюата, подкисление элюата и осаждение малорастворимых соединений скандия капринатом калия при pH 3,5-4,5 и выдержке 15-25 мин, фильтрацию осадка, промывку, сушку и прокалку осадка с получением скандийсодержащего концентрата с содержанием Sc2O3 22,5-25,0%. Сквозная степень извлечения скандия в концентрат составила 70,0-75,5% (Патент РФ №2484164, Кл. С22В 59/00, опубл. 10.06.2013).

Недостатком известного способа является применение редкого дорогостоящего реагента каприната калия и соляной кислоты для отмывки сорбента, что приводит к появлению хлоридных стоков, нетипичных для основного производства глинозема по способу Байера, и необходимости применения дорогостоящего коррозионно-стойкого оборудования.

Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ (прототип) извлечения скандия и РЗЭ из КШ, включающий распульповку красного шлама в растворе серной кислоты до pH=1,3-1,7 с получением пульпы КШ с соотношением Т:Ж=1:2-4, сорбционное выщелачивание скандия непосредственно из пульпы красного шлама сорбентом АФИ-21 или АФИ-22 в течение 1-6 часов при температуре 20°C с соотношением сорбент:пульпа красного шлама 1:20-50, с получением насыщенного по скандию сорбента с содержанием Sc2O3 0,2-0,23 мг/г и обедненной по скандию пульпы, где насыщенный по скандию сорбент подвергается десорбции раствором Na2CO3 с концентрацией 150 г/дм3 с получением десорбированного сорбента, который направляется повторно на сорбционное извлечение скандия и раствора десорбции скандия с содержанием Sc2O3 68-72 мг/дм3, который направляют на получение оксида скандия с использованием осадительных и экстракционных методов аффинажа. Технологическое извлечение скандия из красного шлама составляет 28,6%. Обедненная по скандию пульпа красного шлама направляется на сорбционное извлечение РЗЭ гелевым катионитом КУ-2-8 в течение 3-6 часов при температуре 20°С при соотношении катионит:пульпа 1:3÷10, с получением насыщенного по РЗЭ катионита (содержание Ln2O3 0,9-1,0 мг/г) и отработанной пульпы красного шлама. Насыщенный по РЗЭ катионит подвергается десорбции раствором серной кислоты и сульфата натрия (30 г/дм3 H2SO4+100 г/дм3 Na2SO4) с получением десорбированного катионита, который возвращается на сорбционное извлечение РЗЭ и раствора десорбции РЗЭ, из которого осаждают РЗЭ растворами NaOH или NH4OH с получением чернового концентрата с содержанием РЗЭ не более 0,2%, а отработанная пульпа красного шлама направляется на утилизацию. Сквозное извлечение РЗЭ из КШ не превышает 50% [Смирнов Д.И., Молчанова Т.В., Водолазов Л.И., Пеганов В.А. Сорбционное извлечение редкоземельных элементов, иттрия и алюминия из красных шламов // Цветные металлы, №8, 2002, с. 64-69].

Недостатком данного способа переработки КШ является то, что хотя он и обеспечивает совместное извлечение скандия и РЗЭ и исключает процедуру фильтрации КШ за счет проведения процесса сорбции непосредственно в пульпе КШ, использование сорбента АФИ-22, содержащего в качестве функциональных групп эфиры фосфоновой кислоты, неэффективно, вследствие малой емкости по скандию сорбентов, содержащих активный компонент такой природы. Использование для извлечения РЗЭ катионита гелевой структуры, содержащего сульфокислотные функциональные группы, неэффективно вследствие конкурентной сорбции макрокомпонентов красного шлама железа (III) и алюминия. Стадии осаждения концентрата скандия и доведения концентрата РЗЭ с таким относительно низким содержанием РЗЭ до товарной продукции являются трудоемкими и энергоемкими процессами.

В основу изобретения положена задача, заключающаяся в разработке способа извлечения скандия и РЗЭ из красного шлама, обеспечивающего увеличение степени извлечения скандия и РЗЭ из красного шлама в конечный продукт.

При этом техническим результатом заявляемого изобретения является повышение степени извлечения скандия и РЗЭ в конечный продукт при сокращении затрат на осуществление способа.

Заявляемый технический результат достигается тем, что в способе извлечения скандия и редкоземельных элементов (РЗЭ) из красных шламов, согласно изобретению, включающем распульповку красного шлама раствором серной кислоты, сорбционное выщелачивание скандия из пульпы красного шлама сорбентом с получением насыщенного по скандию сорбента и обедненной по скандию пульпы, десорбцию скандия с получением десорбированного сорбента и раствора десорбции скандия, сорбционное выщелачивание из обедненной по скандию пульпы РЗЭ катионитом, десорбцию насыщенного по РЗЭ катионита с получением десорбированного катионита, и раствора десорбции РЗЭ, из которого осаждают концентрат РЗЭ, распульповку красного шлама проводят при рН=0,5-1, пульпу перед стадией сорбционного выщелачивания скандия подвергают механоактивации, сорбционное выщелачивание скандия ведут органическим сорбентом, в поры которого импрегнирован эфир фосфорной кислоты, при этом насыщенный по скандию сорбент перед десорбцией подвергают обработке смесью растворов фтористоводородной и серной кислоты, десорбцию скандия ведут суспензией фтористоводородной кислоты и фторида кальция с получением концентрата скандия и маточного раствора осаждения концентрата скандия, который донасыщают по фтористоводородной кислоте и фториду кальция и возвращают на десорбцию скандия, сорбционное выщелачивание РЗЭ из обедненной по скандию пульпы ведут катионитом с макропористой структурой, содержащим сульфокислотные функциональные группы, при этом перед десорбцией насыщенный по РЗЭ катионит подвергают обработке раствором серной кислоты, десорбцию насыщенного по РЗЭ катионита ведут раствором сульфата аммония, а концентрат РЗЭ осаждают насыщенным карбонатной солью раствором с одноименным катионом.

Способ дополняют частные отличительные признаки, способствующие достижению указанного технического результата.

Концентрация фтористоводородной кислоты в смеси растворов при обработке насыщенного по скандию сорбента перед десорбцией составляет 1÷15 г/дм3, а концентрация серной кислоты - 100÷300 г/дм3.

Для десорбции скандия используют суспензию с содержанием 10÷100 г/дм3 фтористоводородной кислоты и 1-10 г/дм3 фторида кальция.

Перед десорбцией насыщенный по РЗЭ катионит подвергают обработке раствором серной кислоты с концентрацией 10÷100 г/дм3.

Для десорбции насыщенного по РЗЭ катионита используют раствор сульфата аммония с концентрацией 100÷400 г/дм3.

В качестве насыщенного карбонатной солью раствора для осаждения концентрата РЗЭ используют раствор карбоната аммония, гидрокарбоната аммония или их смеси.

Осаждение концентрата РЗЭ ведут при pH 6÷6,5, а маточный раствор осаждения концентрата РЗЭ повторно направляют на десорбцию.

Известно, что скандий в КШ концентрируется в основном в тяжелой железо-титановой минеральной фракции и может быть переведен в раствор только при ее значительном растворении. Эти минералы не растворимы в слабых минеральных кислотах. Для интенсификации процесса растворения железо-титановых минералов необходимо провести их механоактивацию.

Изменение интервала растворения КШ больше или меньше значений рН=0,5-1 нецелесообразно, т.к. именно в этом интервале pH сорбент, в поры которого импрегнирован эфир фосфорной кислоты, проявляет максимальную емкость по скандию. Кроме того, уменьшение значения pH ниже данного интервала приводит к активному растворению оксида кремния, содержащегося в КШ. Это приводит к гелеобразованию пульпы КШ, что затрудняет процесс его переработки. Увеличение значения pH выше данного интервала не позволяет эффективно выщелачивать скандий из КШ.

Объяснением избирательности поглощения РЗЭ макропористыми катионитами с сульфокислотными функциональными группами по сравнению с их гелевыми аналогами является изменение степени гидратации ионов при их переходе из фазы разбавленного внешнего раствора в концентрированный ионитный раствор. Макропористая структура катионита способствуют большей степени дегидратации в катионите сильнее гидратированных ионов железа (III) и Al, являющихся макрокомпонентами КШ в растворах с рН=0.5÷1 с затратой энергии на дегидратацию. Это приводит к смещению химического равновесия, определяющему переход этих ионов в раствор из фазы ионита, в отличие от ионов РЗЭ, менее подверженных гидролизу в рассматриваемом диапазоне pH.

Кроме того, набухшие в воде гелевые катиониты значительно изменяются в объеме при контакте с концентрированными растворами электролитов. Изменение объема слоя катионита снижает эффективность процесса разделения и сокращает срок эксплуатации катионита.

Введение предварительных обработок сорбента и катионита серной кислотой перед операциями десорбции позволяет отделить скандий от большинства сопутствующих макрокомпонентов. Это приводит к более эффективной последующей переработке растворов десорбции с получением более богатых по скандию концентратов.

Проведение десорбции скандия суспензией, содержащей 10÷100 г/дм3 фтористоводородной кислоты и 1-10 г/дм3 фторида кальция позволяет сразу, за одну операцию, в процессе десорбции, получать концентрат скандия, за счет соосаждения с фторидом кальция. После фильтрации полученной суспензии, раствор десорбции донасыщают по фтористоводородной кислоте и фториду кальция и направляют на повторную десорбцию, что позволяет работать с фторсодержащими средами, исключая образование отходов.

Проведение десорбции РЗЭ раствором сульфата аммония позволяет боле эффективно вести процесс десорбции, т.к. сродство катионита с сульфокислотными функциональными группами к одновалентным ионам уменьшается в ряду NH4+>Na+>K+>H+. Кроме того, использование аммонийных солей как в процессе десорбции, так и в процессе осаждения концентрата РЗЭ, позволяет исключить образование отходов и работать в замкнутом цикле.

Принципиальная технологическая схема извлечения скандия и РЗЭ представлена на фигуре. Осуществление заявляемого способа и его преимущество перед прототипом подтверждается следующими примерами.

Пример 1. Навеску КШ в количестве 100 г распульповывали в растворе серной кислоты при рН=1 и соотношении Т:Ж в пульпе КШ=1:3, помещали в бисерную лабораторную мельницу и измельчали (механоактивация) в течение 10 минут. Параллельно КШ распульповывали в растворе серной кислоте при рН=1 и соотношении Т:Ж в пульпе КШ=1:3 без проведения стадии измельчения (механоактивации). В таблице 1 приведены результаты исследований по влиянию механоактивации на степень перевода скандия в жидкую часть пульпы КШ

Как видно из таблицы 1, применение стадии механоактивации позволяет повысить степень извлечения скандия с 47 до 57%, степень извлечения РЗМ - с 44 до 51%.

Пример 2. Навеску сорбента, в поры которого импрегнированы эфиры фосфоновой кислоты, и навеску сорбента, в поры которого импрегнированы эфиры фосфорной кислоты, в количестве 1 грамм каждый помещали в реактора и заливали их пульпой КШ, которая была подвергнута стадии механоактивации, в количестве 50 миллилитров при соотношении Т:Ж=1:3 и выдерживали при перемешивании в течение 6 часов при рН=1 и температуре 20°С для каждого. В таблице 2 приведены результаты исследований по влиянию природы активных групп сорбента на степень сорбционного извлечения скандия из пульпы КШ.

Пример 3. Навески сорбентов, в поры которого импрегнированы эфиры фосфорной кислоты, в количестве 1 грамм каждый, помещали в реактор и заливали их пульпой КШ, которая была подвергнута стадии механоактивации, в количестве 50 миллилитров при соотношении Т:Ж=1:3 и выдерживали при перемешивании в течение 6 часов при различных pH и температуре 20°С. В таблице 3 приведены результаты исследований по влиянию pH на степень сорбционного извлечения скандия из пульпы КШ.

Как видно из таблицы 3, максимальная степень извлечения скандия достигается при pH 0,5÷1.

Пример 4. Навеску макропористого катионита, содержащего сульфокислотные функциональные группы, и навеску его гелевого аналога в количестве 5 г каждый помещали в реактора и заливали их пульпой КШ, которая была подвергнута стадии механоактивации, в количестве 50 миллилитров при соотношении Т:Ж=1:3 и выдерживали при перемешивании в течение 6 часов при рН=1 и температуре 20°С для каждого. В таблице 4 приведены результаты исследований по влиянию природы активных групп сорбента на степень сорбционного извлечения скандия из пульпы КШ.

Пример 5. Навеску сорбента, в поры которого импрегнированы эфиры фосфорной кислоты, в количестве 1 грамм, помещали в реактор и заливали ее пульпой КШ, которая предварительно была подвергнута стадии механоактивации в бисерной мельнице в течение 10 минут, в количестве 50 миллилитров при соотношении Т:Ж=1:3 и выдерживали при перемешивании в течение 6 часов при рН=1 и температуре 20°С. Затем разделяли пульпу КШ и насыщенный по скандию сорбент на сите. Насыщенный по скандию сорбент помещали в пластиковую колонку диаметром 10 мм и высотой 100 мм и пропускали через нее раствор, содержащий 10 г/дм3 плавиковой кислоты и серной кислоты с концентрацией 200 г/дм3. После обработки раствором сорбент извлекали из колонки, помещали в реактор и заливали суспензией, содержащей 10 г/дм3 фтористоводородной кислоты и 1-10 г/дм3 фторида кальция. Полученную смесь разделяли на сите. Сорбент оставался на сите, а суспензию направляли на фильтрацию. Отфильтрованный осадок скандиевого концентрата анализировали на содержание скандия и проводили расчет сквозной степени извлечения скандия.

Далее навеску макропористого катионита в количестве 5 г помещали в реактор и заливали ее обедненной по скандию пульпой КШ в количестве 50 миллилитров при соотношении Т:Ж=1:3 и выдерживали при перемешивании в течение 6 часов при рН=1 и температуре 20°С. Затем разделяли отработанную пульпу КШ и насыщенный по РЗЭ катионит на сите. Насыщенный по РЗЭ катионит помещали в пластиковую колонку диаметром 10 мм и высотой 100 мм и пропускали через нее раствор, содержащий 50 г/дм серной кислоты. После пропускания раствора, в той же колонке, проводили десорбцию насыщенного по РЗЭ катионита раствором сульфата аммония с концентрацией 300 г/дм3. Из раствора десорбции проводили осаждение концентрата РЗЭ путем добавления насыщенного раствора карбоната аммония до рН=6,3. Полученную суспензию фильтровали. Отфильтрованный осадок - концентрат РЗЭ анализировали на содержание РЗЭ и проводили расчет сквозной степени извлечения РЗЭ.

В таблице 5 приведены результаты исследований по степени извлечения скандия и РЗЭ из КШ.

Таким образом, использование заявляемого способа извлечения скандия и РЗЭ позволяет создать технологию, предусматривающую сорбционное извлечение скандия из пульпы КШ с большей степенью извлечения и с получением более богатого по скандию концентрата, технологическое извлечение скандия из красного шлама составляет не менее 60% и сорбционное извлечение РЗЭ с большей степенью извлечения и с получением более богатого по РЗЭ концентрата (степень извлечения РЗЭ составила не менее 60%).

Похожие патенты RU2603418C1

название год авторы номер документа
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ КРАСНОГО ШЛАМА ГЛИНОЗЕМНОГО ПРОИЗВОДСТВА 2017
  • Козырев Александр Борисович
  • Петракова Ольга Викторовна
  • Сусс Александр Геннадиевич
  • Горбачев Сергей Николаевич
  • Панов Андрей Владимирович
RU2692709C2
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО МАТЕРИАЛА 2014
  • Нечаев Андрей Валерьевич
  • Козырев Александр Борисович
  • Сибилев Александр Сергеевич
  • Смирнов Александр Всеволодович
  • Петракова Ольга Викторовна
  • Горбачев Сергей Николаевич
  • Панов Андрей Владимирович
RU2582425C1
Способ извлечения редкоземельных элементов из фосфогипса 2017
  • Нечаев Андрей Валерьевич
  • Шестаков Сергей Владимирович
  • Сибилев Александр Сергеевич
  • Смирнов Александр Всеволодович
RU2663512C1
Способ извлечения редкоземельных металлов из полугидратного фосфогипса 2021
  • Галиева Жанетта Николаевна
  • Абрамов Алексей Михайлович
  • Соболь Юрий Борисович
  • Дронов Дмитрий Валерьевич
  • Геря Анастасия Андреевна
  • Алдушкин Александр Вениаминович
RU2770118C1
СПОСОБ ПОПУТНОГО ПОЛУЧЕНИЯ КОНЦЕНТРАТА СКАНДИЯ ИЗ РАСТВОРОВ ВЫЩЕЛАЧИВАНИЯ УРАНА 2023
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Буньков Григорий Михайлович
  • Смышляев Денис Валерьевич
  • Боталов Максим Сергеевич
  • Таукин Асланбек Оразбаевич
RU2813590C1
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ТЕХНОЛОГИЧЕСКИХ И ПРОДУКТИВНЫХ РАСТВОРОВ 2016
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Буньков Григорий Михайлович
  • Боталов Максим Сергеевич
  • Попонин Николай Анатольевич
  • Смирнов Алексей Леонидович
  • Смышляев Денис Валерьевич
RU2635206C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ КРАСНОГО ШЛАМА МЕТОДОМ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ 2020
  • Козырев Борис Александрович
  • Сизяков Виктор Михайлович
RU2756599C1
СПОСОБ ПОЛУЧЕНИЯ СКАНДИЕВОГО КОНЦЕНТРАТА ИЗ КРАСНЫХ ШЛАМОВ 2013
  • Климентенок Геннадий Николаевич
  • Анашкин Вячеслав Серафимович
  • Вишняков Сергей Егорович
  • Панов Андрей Владимирович
RU2536714C1
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО ПРОДУКТИВНОГО РАСТВОРА 2015
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Кириллов Сергей Владимирович
  • Буньков Григорий Михайлович
  • Боталов Максим Сергеевич
  • Попонин Николай Анатольевич
  • Смирнов Алексей Леонидович
  • Смышляев Денис Валерьевич
RU2612107C2
Способ извлечения скандия из скандийсодержащего сырья 2019
  • Нечаев Андрей Валерьевич
  • Шестаков Сергей Владимирович
  • Сибилев Александр Сергеевич
  • Смирнов Александр Всеволодович
  • Жуков Станислав Викторович
RU2694866C1

Иллюстрации к изобретению RU 2 603 418 C1

Реферат патента 2016 года СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ КРАСНЫХ ШЛАМОВ

Изобретение относится к извлечению скандия и редкоземельных элементов (РЗЭ) из красных шламов. Распульповку красного шлама проводят при рН=0,5-1. Пульпу подвергают механоактивации, сорбционное выщелачивание скандия ведут с органическим сорбентом, в поры которого импрегнирован эфир фосфорной кислоты. При этом сорбент перед десорбцией обрабатывают смесью растворов фтористоводородной и серной кислоты. Десорбцию скандия ведут суспензией фтористоводородной кислоты и фторида кальция с получением концентрата скандия и маточного раствора, который донасыщают по фтористоводородной кислоте и фториду кальция и возвращают на десорбцию скандия. Сорбционное выщелачивание обедненной по скандию пульпы РЗЭ ведут с катионитом с макропористой структурой, содержащим сульфокислотные функциональные группы. Перед десорбцией катионит обрабатывают раствором серной кислоты. Десорбцию катионита ведут раствором сульфата аммония, а концентрат РЗЭ осаждают насыщенным раствором карбонатной соли с одноименным катионом. Техническим результатом является повышение степени извлечения скандия и РЗЭ в конечный продукт при сокращении затрат на осуществление способа. 6 з.п. ф-лы, 1 ил., 5 табл., 5 пр.

Формула изобретения RU 2 603 418 C1

1. Способ извлечения скандия и редкоземельных элементов (РЗЭ) из красных шламов, включающий распульповку красного шлама раствором серной кислоты, сорбционное выщелачивание скандия из пульпы красного шлама с использованием сорбента с получением насыщенного по скандию сорбента и обедненной по скандию пульпы, десорбцию скандия с получением десорбированного сорбента и раствора десорбции скандия, сорбционное выщелачивание РЗЭ из обедненной по скандию пульпы с использованием катионита, десорбцию насыщенного по РЗЭ катионита с получением десорбированного катионита и раствора десорбции РЗЭ, из которого осаждают концентрат РЗЭ, отличающийся тем, что распульповку красного шлама проводят при pH=0,5-1, пульпу перед сорбционным выщелачиванием скандия подвергают механоактивации, сорбционное выщелачивание скандия ведут с использованием органического сорбента, в поры которого импрегнирован эфир фосфорной кислоты, при этом насыщенный по скандию сорбент перед десорбцией подвергают обработке смесью растворов фтористоводородной и серной кислоты, десорбцию скандия ведут суспензией фтористоводородной кислоты и фторида кальция с получением концентрата скандия и маточного раствора осаждения концентрата скандия, который донасыщают по фтористоводородной кислоте и фториду кальция и возвращают на десорбцию скандия, сорбционное выщелачивание РЗЭ из обедненной по скандию пульпы ведут с использованием катионита с макропористой структурой, содержащего сульфокислотные функциональные группы, при этом перед десорбцией насыщенный по РЗЭ катионит подвергают обработке раствором серной кислоты, десорбцию насыщенного по РЗЭ катионита ведут раствором сульфата аммония, а концентрат РЗЭ осаждают насыщенным карбонатной солью раствором с одноименным катионом.

2. Способ по п. 1, отличающийся тем, что концентрация фтористоводородной кислоты в смеси растворов при обработке насыщенного по скандию сорбента перед десорбцией составляет 1÷15 г/дм3, а концентрация серной кислоты - 100÷300 г/дм3.

3. Способ по п. 1, отличающийся тем, что для десорбции скандия используют суспензию с содержанием 10÷100 г/дм3 фтористоводородной кислоты и 1-10 г/дм3 фторида кальция.

4. Способ по п. 1, отличающийся тем, что перед десорбцией насыщенный по РЗЭ катионит подвергают обработке раствором серной кислоты с концентрацией 10÷100 г/дм3.

5. Способ по п. 1, отличающийся тем, что для десорбции насыщенного по РЗЭ катионита используют раствор сульфата аммония с концентрацией 100÷400 г/дм3.

6. Способ по п. 1, отличающийся тем, что для осаждения концентрата РЗЭ используют насыщенный раствор карбоната аммония, гидрокарбоната аммония или их смеси.

7. Способ по п. 1, отличающийся тем, что осаждение концентрата РЗЭ ведут при pH 6÷6,5, а маточный раствор осаждения концентрата РЗЭ повторно направляют на десорбцию.

Документы, цитированные в отчете о поиске Патент 2016 года RU2603418C1

СМИРНОВ Д.И.и др
Сорбционное извлечение редкоземельных элементов, иттрия и алюминия из красных шламов, Цветные металлы, 2002, N8, с.64-69
СПОСОБ ПОЛУЧЕНИЯ СКАНДИЙСОДЕРЖАЩЕГО КОНЦЕНТРАТА ИЗ КРАСНЫХ ШЛАМОВ 2011
  • Анашкин Вячеслав Серафимович
  • Бухаров Алексей Николаевич
  • Гиршин Григорий Лазаревич
  • Ефимов Алексей Юрьевич
  • Сиваков Дмитрий Александрович
RU2484164C1
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ТЕХНОЛОГИЧЕСКИХ И ПРОДУКТИВНЫХ РАСТВОРОВ 2010
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Смирнов Алексей Леонидович
  • Дементьев Алексей Андреевич
  • Попонин Николай Анатольевич
RU2462523C1
СПОСОБ ИЗВЛЕЧЕНИЯ СУММЫ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ РАСТВОРОВ 2010
  • Рычков Владимир Николаевич
  • Кириллов Евгений Владимирович
  • Смирнов Алексей Леонидович
  • Дементьев Алексей Андреевич
  • Попонин Николай Анатольевич
RU2457266C1
WO 2013138900 A1, 26.09.2013
AU 2012250460 A1, 02.05.2013
US 5338520 A, 16.08.1994
WO 2012149642 A1, 08.11.2012.

RU 2 603 418 C1

Авторы

Рычков Владимир Николаевич

Кириллов Сергей Владимирович

Кириллов Евгений Владимирович

Буньков Григорий Михайлович

Боталов Максим Сергеевич

Горбачев Сергей Николаевич

Петракова Ольга Викторовна

Панов Андрей Владимирович

Сусс Александр Геннадьевич

Козырев Александр Борисович

Даты

2016-11-27Публикация

2015-07-24Подача