СПОСОБ МОЛЛИРОВАНИЯ ИЗДЕЛИЙ ИЗ СТЕКЛА И АНТИАДГЕЗИОННЫЙ СОСТАВ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2017 года по МПК C03B23/23 C03B40/33 

Описание патента на изобретение RU2635419C2

Область техники

Изобретение относится к способам высокотемпературного формования (моделирования) как заготовок неорганического листового стекла, так и стеклопакетов сложной формы. Во избежание спекания соприкасающихся поверхностей стекол в процессе моллирования между стеклами наносят разделительный антиадгезионный состав.

Изобретение может быть использовано для остекления средств передвижения, зданий и сооружений, в том числе объектов культуры и искусства, для авиационной и космической промышленности при изготовлении многослойного стекла как для кабин летательного аппарата, так и для стеклоизделий специального назначения, а также для крупногабаритных изделий сложной 3D-формы.

Изготовление изделий сложной формы из заготовок неорганического листового стекла имеет несколько основных стадий, первой из которых является высокотемпературное формование (моллирование) стекла или стеклопакета.

Известен способ предохранения стекла от спекания в процессе моллирования путем нанесения на его поверхность порошкообразного талька [Патент RU №2024454, C03C 27/00, 15.12.1994].

Распыление талька осуществляют путем создания в закрытом сосуде избыточного давления воздуха, выбрасываемого затем совместно с порошком в проходную камеру с рольгангом, на котором находится стекло.

Тальк представляет собой тонкодисперсный порошок с величиной частиц 0,1-0,6 мм и является гигроскопичным материалом. При его нагреве до 600°C происходит спекание порошка со стеклом. Это приводит к образованию дефектов в виде углублений на поверхности стеклоизделия и приводит к необходимости последующей отбраковки стекла.

В случае нанесения пересушенного порошкообразного талька происходит его сдвиг при моллировании за счет перемещения стекол относительно друг друга, образование зон с повышенным содержанием талька и некачественное моллирование с местной неприлегаемостью стекол друг к другу.

Известен способ нанесения на стекло окиси магния перед моллированием, позволяющий моллировать стекла при температуре до 600°С [Патент СССР №411899, C03B 23/02, 04.02.1950].

Нанесение осуществляют «копчением» стекол путем сжигания металлического магния. В металлический ящик загружают стружку металлического магния, перекрывают металлической сеткой и сверху помещают стекло. Стружку поджигают, и частички окиси магния осаждаются на стекле. Процесс проводят в течение 3-5 минут. Окись магния совершенно нерастворима в воде, огнеупорна и не разлагается при температуре деформации стекла. Размер частиц окиси магния составляет от 0,1 до 1 мм.

Недостатком указанного технического решения является большой разброс в размерах частиц.

При использовании окиси магния возможно скатывание частиц даже при относительно малом изгибании стекла, так как любой наклон способствует из-за формы частиц массовому их перемещению под собственным весом. Кроме того, при высоких температурах образуются агломераты частиц окиси магния, которые вдавливаются в поверхность размягченного стекла, что существенно снижает его оптические и прочностные свойства. Для удаления данных дефектов стекло подвергают дополнительной механической обработке.

Известен способ нанесения на поверхность стекла полиалкилгидросилоксана в качестве антиадгезионного раствора [Патент US №4301197, B05D 3/00, 17.11.1981].

Концентрация полиалкилгидросилоксана в растворителе составляет 5÷25 мас. %. Стеклянную поверхность при комнатной температуре обрабатывают изопропанолом с серной кислотой и раствором примерно 5% полиалкилгидросилоксана. Алкильный фрагмент конкретного силоксана включает метальные и разветвленные алкильные группы, такие как изопропил или третичный бутил. Нанесение осуществляют при комнатной температуре протиранием, легкой ручной полировкой, удалением избытка материала с помощью влажной ткани, последующей сушки. Адгезия полиалкилгидросилоксана к поверхности стекла обеспечивается реакцией силанольных групп с поверхностью стекла, образуя в итоге практически мономолекулярный слой полиалкилгидросилоксана.

Недостатком указанного технического решения является неравномерность нанесения слоя и то, что при высоких температурах возрастает вероятность частичного разрушения поверхностного слоя покрытия, что приводит к видимым дефектам, а в случае совместного моллирования стеклопакетов - образование неразъемного соединения.

Наиболее близким к предложенному изобретению является способ моллирования стекол, представленный фирмой PPG Industries [Патент US 5110336, С03В 40/00, 5.05.1992 - прототип].

Разделительное покрытие, используемое при моллировании нескольких стекол, представляет собой смесь синтетической аморфной кремниевой кислоты и воды. Средний размер частиц составляет 4-10 мкм, концентрация в пересчете на SiO2 составляет 0,1-2,0%.

Нанесение осуществляют методом распыления с помощью пистолета-распылителя. После термообработки полученный пакет стекол разбирают на отдельные стеклоизделия.

Недостатком данного способа является образование матового налета на поверхности стеклоизделий. Данный налет существенно снижает оптические характеристики большинства стеклоизделий.

Задачей предлагаемого изобретения является предотвращение неразъемного соединения стекол в стеклопакете при моллировании при высоких температурах (больше 600°С), а также образования на поверхности стекол дефектов в виде каверн, твердых частиц и ядовитых продуктов разложения.

Вся поверхность формируемого стеклоизделия разделяется на рабочую прозрачную часть и технологическую, к которой требования по качеству поверхности занижены.

Для достижения данной цели предлагается способ моллирования двух и более стекол в пакете, путем нанесения на технологическую часть стекол высокотемпературного антиадгезионного разделительного состава на основе диспергированных сополимеров диметилсилоксана и мелкодисперсного углерода, которые предотвращают образование дефектов при моллировании, легко наносятся и удаляются с поверхности при сохранении прозрачности стеклоизделий в рабочей зоне.

Разделительный состав включает мелкодисперсный углерод, органическое связующее, растворитель.

В качестве органического связующего используют полиорганосилоксаны, применяемые в виде дисперсии в органических растворителях.

В качестве растворителей применяют нефрас (т.н. «нефтяной растворитель» - смесь углеводородов, получаемых при перегонке нефти), метилтретбутиловый эфир, изобутанол, этанол, воду или их смесь.

Разделительный состав готовят путем диспергирования и гомогенизации компонентов под действием ультразвуковой обработки. Также в качестве методов гомогенизации используют шаровую мельницу, диспергаторы, краскотерки.

В качестве метода нанесения используют распыление пульверизатором.

Предлагаемая полимерная основа в составе антиадгезионного композиционного материала должна предотвращать слипание коллоидных частиц мелкодисперсного углерода в агломераты в смазке, способствовать равномерному распределению графита на смазываемой поверхности, сохраняться в качестве носителя при высоких температурах. В наибольшей степени этим требованиям отвечают полидиметилсилоксаны (ПДМС). Для приготовления антиадгезионного состава были выбраны следующие марки ПДМС: ПДМС-50, ПДМС-200, ПДМС-350, ПДМС-1000 [ГОСТ 13032-77 «Жидкости полиметилсилоксановые. Технические условия» от 01.01.1979]. Низкое поверхностное натяжение полидиметилсилоксанов обеспечивает равномерное растекание смазки по поверхности стекла.

Диспергирование углерода до наноразмерного состояния (меньше 200 нм) и эффективное перемешивание, достигаемое при обработке растворов в поле ультразвуковой кавитации, позволяет повысить их дисперсность, стабильность и гомогенность.

Раствор, содержащий мелкодисперсный углерод, наносят на всю поверхность стеклоизделия с помощью пульверизатора, который подключен к источнику сжатого воздуха с давлением от 3 до 5 атм. Далее кладут шаблон на рабочую часть стекла, и нанесение приведенного состава на технологическую часть стекол осуществляют также с помощью пульверизатора.

После напыления шаблон убирают, и стекла транспортируют в печь для моллирования стеклоизделий и нагревают до 700°С. При высоких температурах и при ограниченном доступе воздуха в отсутствие катализатора ПДМС претерпевают деполимеризацию с образованием низкомолекулярных органосилоксанов и органических соединений без образования углеродсодержащего кокса.

Полимерные композиционные материалы (ПКМ) на основе двух растворителей - нефраса и этанола - используют для моллирования стекол на опытно-промышленной установке. В результате напыления на поверхности стекла образуется слой полидиметилсилоксановых полимеров и мелкодисперсного углерода, препятствующий спеканию стекол и образованию дефектов при моллировании. Составы ПКМ, приготовленные с использованием этанола в качестве растворителя, обладают преимуществом по сравнению с нефрасом, и поэтому для использования в опытно-промышленном производстве следует рекомендовать этанол.

Ниже изобретение иллюстрируется конкретными примерами его осуществления.

Пример 1.

Смесь, содержащую 0,1 кг (8,34 мас. %) мелкодисперсного углерода с 0,85 кг (70,83 мас. %) ПДМС-350 (вязкость 350 мм2/с) обрабатывают ультразвуком в течение 30 мин. В полученную композицию вводят 0,25 кг (20,83 мас. %) нефраса, тщательно перемешивают на диспергаторе и обрабатывают ультразвуком в течение 30 мин. Разделительный состав наносят в 2 стадии. На первой стадии раствор, содержащий диспергированный графит, наносят на всю поверхность стекла с помощью пульверизатора с давлением 3 атм. На второй стадии кладут шаблон на рабочую часть стекла и наносят смесь из углеродосодержащего материала, полиорганосилоксанового связующего и растворителя на технологическую часть стекол с помощью пульверизатора до образования равномерного слоя на поверхности, после чего высушивают для удаления растворителя. Шаблон убирают. Все пластины складывают в пакет в виде «сэндвича» и сверху накладывают необработанную пластину. Полученный стеклянный пакет помещают в муфельную печь, прогревают при температуре 600°С в течение 3 часов, а затем нагрев отключают и печь с полученным пакетом охлаждают до комнатной температуры. После термообработки полученный пакет стекол разбирают на отдельные стеклоизделия.

Пример 2.

Приготовление смеси 0,10 кг (8,7 мас. %) мелкодисперсного углерода с 0,80 кг (69,57 мас. %) ПДМС-200 и обработка ультразвуком в течение 40 мин. В полученную композицию вводят 0,25 кг (21,73 мас. %) этанола, тщательно перемешивают на диспергаторе и обрабатывают ультразвуком в течение 30 мин. Разделительный состав наносят в 2 стадии. На первой стадии раствор, содержащий диспергированный графит, наносят на всю поверхность стекла с помощью пульверизатора с давлением 4 атм. На второй стадии кладут шаблон на рабочую часть стекла и наносят смесь из углеродосодержащего материала, полиорганосилоксанового связующего и растворителя на технологическую часть стекол с помощью пульверизатора до образования равномерного слоя на поверхности, после чего высушивают для удаления растворителя. Шаблон убирают. Все пластины складывают в пакет в виде «сэндвича» и сверху накладывают необработанную пластину. После термообработки полученный пакет стекол разбирают на отдельные стеклоизделия.

Пример 3.

Приготовление смеси 0,15 кг (15,76 мас. %) мелкодисперсного углерода с 0,75 кг (78,78 мас. %) ПДМС-1000 и обработка ультразвуком в течение 30 мин. В полученную композицию вводят 0,052 кг (5,46 мас. %) смеси воды, эмульгаторов, тщательно перемешивают в краскотерке и обрабатывают ультразвуком в течение 30 мин. Разделительный состав наносят в 2 стадии. На первой стадии раствор, содержащий диспергированный графит, наносят на всю поверхность стекла с помощью пульверизатора с давлением 5 атм. На второй стадии кладут шаблон на рабочую часть стекла и наносят смесь из углеродосодержащего материала, полиорганосилоксанового связующего и растворителя на технологическую часть стекол с помощью пульверизатора до образования равномерного слоя на поверхности, после чего высушивают для удаления растворителя. Шаблон убирают. Все пластины складывают в пакет в виде «сэндвича» и сверху накладывают необработанную пластину. Полученный стеклянный пакет помещают в муфельную печь, прогревают при температуре 700°С в течение 3 часов, а затем печь с полученным пакетом охлаждают до комнатной температуры. После термообработки полученный пакет стекол разбирают на отдельные стеклоизделия.

Пример 4.

Предлагаемый способ осуществляют аналогично примеру 3. Состав отличается тем, что включает в себя приготовление смеси 0,20 кг (18,18 мас. %) мелкодисперсного углерода с 0,70 кг (63,64 мас. %) ПДМС-50 и обработку ультразвуком в течение 30 мин. В полученную композицию вводят 0,20 г (18,18 мас. %) метилтретбутиловый эфир (МТБЭ), тщательно перемешивают на диспергаторе и обрабатывают ультразвуком в течение 30 мин.

Пример 5.

Приготовление смеси 0,25 кг (22,73 мас. %) сажи с 0,65 кг (59,09 мас. %) ПДМС-350 и обработка ультразвуком в течение 30 мин. В полученную композицию вводят 0,20 кг (18,18 мас. %) смеси воды, эмульгаторов, тщательно перемешивают в шаровой мельнице и обрабатывают ультразвуком в течение 30 мин. Разделительный состав наносят в 2 стадии. На первой стадии раствор, содержащий диспергированный графит, наносят на всю поверхность стекла с помощью пульверизатора с давлением 5 атм. На второй стадии кладут шаблон на рабочую часть стекла и наносят смесь из углеродосодержащего материала, полиорганосилоксанового связующего и растворителя на технологическую часть стекол с помощью пульверизатора до образования равномерного слоя на поверхности, после чего высушивают для удаления растворителя. Шаблон убирают. Все пластины складывают в пакет в виде «сэндвича» и сверху накладывают необработанную пластину. Полученный стеклянный пакет помещают в муфельную печь, прогревают при температуре 650°С в течение 3 часов, а затем печь с полученным пакетом охлаждают до комнатной температуры. После термообработки полученный пакет стекол разбирают на отдельные стеклоизделия.

Пример 6.

Предлагаемый способ осуществляют аналогично примеру 5. Состав отличается тем, что включает в себя приготовление смеси 0,30 кг (26,09 мас. %) сажи с 0,6 кг (52,17 мас. %) ПДМС-350 и обработку ультразвуком в течение 30 мин. В полученную композицию вводят 0,25 кг (21,74 мас. %) этанола, тщательно перемешивают в шаровой мельнице и обрабатывают ультразвуком в течение 30 мин.

Пример 7.

Предлагаемый способ осуществляют аналогично примеру 1. Состав отличается тем, что включает в себя 0,35 кг (31,82 мас. %) мелкодисперсного углерода, который смешивают на краскотерке с 0,5 кг (45,45 мас. %) ПДМС-1000. В полученную композицию вводят 0,25 кг (22,73 мас. %) этанола, тщательно перемешивают на диспергаторе, обрабатывают ультразвуком в течение 30 мин.

Пример 8.

Предлагаемый способ осуществляют аналогично примеру 5. Отличие состоит в том, что 0,40 кг (20,51 мас. %) мелкодисперсного углерода смешивают на краскотерке с 0,55 кг (28,21 мас. %) ПДМС-350. В полученную композицию вводят 1 кг (51,28 мас. %) изобутанола, тщательно перемешивают на диспергаторе и обрабатывают ультразвуком в течение 30 мин.

Пример 9.

Предлагаемый способ осуществляют аналогично примеру 4. Состав отличается тем, что включает в себя 0,45 кг (23,68 мас. %) мелкодисперсного углерода, который смешивают на краскотерке с 0,45 кг (23,68 мас. %) ПДМС-50. В полученную композицию вводят 1 кг (52,64 мас. %) смеси воды, эмульгаторов, тщательно перемешивают в шаровой мельнице и обрабатывают ультразвуком в течение 30 мин.

Пример 10.

Предлагаемый способ осуществляют аналогично примеру 1. Состав отличается тем, что включает в себя 0,50 кг (43,48 мас. %) мелкодисперсного углерода, который смешивают на краскотерке с 0,40 кг (34,78 мас. %) ПДМС-50. В полученную композицию вводят 0,25 кг (21,74 мас. %) смеси воды, эмульгаторов, тщательно перемешивают в шаровой мельнице и обрабатывают ультразвуком в течение 30 мин.

Пример 11.

0,55 кг (39,29 мас. %) мелкодисперсного углерода смешивают на краскотерке с 0,35 кг (25,0 мас. %) ПДМС-350. В полученную композицию вводят 0,5 кг (35,71 мас. %) нефраса, тщательно перемешивают на диспергаторе и обрабатывают ультразвуком в течение 30 мин. Разделительный состав наносят в 2 стадии. На первой стадии раствор, содержащий диспергированный графит, наносят на всю поверхность стекла с помощью пульверизатора с давлением 3 атм. На второй стадии кладут шаблон на рабочую часть стекла и наносят смесь из углеродосодержащего материала, полиорганосилоксанового связующего и растворителя на технологическую часть стекол с помощью пульверизатора до образования равномерного слоя на поверхности, после чего высушивают для удаления растворителя. Шаблон убирают. Все пластины складывают в пакет в виде «сэндвича» и сверху накладывают необработанную пластину. Полученный стеклянный пакет помещают в муфельную печь, прогревают при температуре 700°С в течение 3 часов, а затем печь с полученным пакетом охлаждают до комнатной температуры. После термообработки полученный пакет стекол разбирают на отдельные стеклоизделия.

Пример 12.

Предлагаемый способ осуществляют аналогично примеру 1. Состав отличается тем, что включает в себя 0,05 кг (5,0 мас. %) мелкодисперсного углерода, который смешивают на краскотерке с 0,85 кг (85,0 мас. %) ПДМС-350. В полученную композицию вводят 0,1 кг (10,0 мас. %) смеси воды, эмульгаторов, тщательно перемешивают на диспергаторе и обрабатывают ультразвуком в течение 30 мин.

Пример 13.

Предлагаемый способ осуществляют аналогично примеру 2. Отличие состоит в том, что 0,25 кг (5,0 мас. %) мелкодисперсного углерода смешивают на краскотерке с 0,25 кг (5,0 мас. %) ПДМС-350. В полученную композицию вводят 4,5 кг (90,0 мас. %) смеси воды, эмульгаторов, тщательно перемешивают на диспергаторе и обрабатывают ультразвуком в течение 30 мин.

Пример 14.

Предлагаемый способ осуществляют аналогично примеру 8. Отличие состоит в том, что 0,7 кг (70,0 мас. %) диспергированного графита и 0,1 кг (10,0 мас. %) сажи смешивают на краскотерке с 0,1 кг (10 мас. %) ПДМС-350. В полученную композицию вводят 0,1 кг (10,0 мас. %) нефраса, тщательно перемешивают на диспергаторе и обрабатывают ультразвуком в течение 30 мин.

Пример 15.

Предлагаемый способ осуществляют аналогично примеру 1. Состав отличается тем, что включает в себя 0,4 кг (40,0 мас. %) мелкодисперсного углерода, который смешивают на краскотерке с 0,30 кг (30 мас. %) ПДМС-50. В полученную композицию вводят 0,15 кг (15,0 мас. %) этанола и 0,15 кг (15,0 мас. %) смеси воды с эмульгаторами, тщательно перемешивают в шаровой мельнице и обрабатывают ультразвуком в течение 30 мин.

Пример 16.

Предлагаемый способ осуществляют аналогично примеру 5. Отличие состоит в том, что 0,50 кг (50,0 мас. %) мелкодисперсного углерода смешивают на краскотерке с 0,45 кг (45,0 мас. %) ПДМС-350. В полученную композицию вводят 0,05 кг (5,0 мас. %) МТБЭ, тщательно перемешивают на диспергаторе и обрабатывают ультразвуком в течение 30 мин.

Пример 17.

Предлагаемый способ осуществляют аналогично примеру 5. Отличие состоит в том, что 0,05 кг (5,0 мас. %) мелкодисперсного углерода смешивают на краскотерке с 0,05 кг (5,0 мас. %) ПДМС-350. В полученную композицию вводят смесь, состоящую из 0,15 кг (15 мас. %) нефраса, 0,25 кг (25 мас. %) МТБЭ, 0,10 кг (10 мас. %) изобутанола, 0,3 кг (30 мас. %) этанола и 0,10 кг (10 мас. %) воды тщательно перемешивают на диспергаторе и обрабатывают ультразвуком в течение 30 мин.

Во всех примерах стеклопакет легко разбирается, спекания стекол не наблюдается, поверхность рабочей части стеклозаготовок не имеет видимых дефектов и не требует дополнительной обработки.

Похожие патенты RU2635419C2

название год авторы номер документа
СПОСОБ МОЛЛИРОВАНИЯ ИЗДЕЛИЙ ИЗ СТЕКЛА И РАЗДЕЛИТЕЛЬНЫЙ СОСТАВ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2018
  • Скрозникова Вера Викторовна
RU2698925C1
СПОСОБ МОЛЛИРОВАНИЯ ПАКЕТА ЛИСТОВЫХ СТЕКОЛ 2015
  • Солинов Владимир Федорович
  • Комлев Александр Алексеевич
RU2633850C2
СПОСОБ МОЛЛИРОВАНИЯ СТЕКЛОИЗДЕЛИЙ 2014
  • Солинов Евгений Федорович
  • Солинов Владимир Федорович
  • Бучанов Владимир Васильевич
  • Ревенко Валерий Иванович
RU2546693C1
Способ переформования листового стекла 1976
  • Пестов Александр Васильевич
  • Хрычев Анатолий Родионович
SU660946A1
СПОСОБ ЗАЩИТЫ ПОВЕРХНОСТИ СТЕКЛА 2014
  • Машир Юрий Иванович
  • Микуло Раиса Васильевна
  • Ситкин Александр Николаевич
  • Солинов Владимир Федорович
  • Шумилова Людмила Григорьевна
RU2578235C2
Способ одновременного моллирования нескольких комплектов стекол 1978
  • Пестов Александр Васильевич
  • Бурыкин Владимир Николаевич
  • Дорохов Евгений Сергеевич
SU743954A1
КЛЕЕВАЯ КОМПОЗИЦИЯ И САМОКЛЕЯЩИЙСЯ МАТЕРИАЛ, СОДЕРЖАЩИЙ ЕЕ 2007
  • Каблов Евгений Николаевич
  • Лукина Наталия Филипповна
  • Жадова Нонна Сергеевна
  • Строилов Сергей Вячеславович
  • Твердов Александр Иванович
RU2322470C1
КЛЕЕВАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ МНОГОСЛОЙНЫХ СТЕКОЛ 1995
  • Траченко В.И.
  • Лешина И.В.
  • Усов В.В.
  • Лешин В.В.
  • Однолетков А.В.
  • Уваров К.А.
  • Сергеев С.А.
  • Кокурина И.И.
  • Пронченко В.Н.
RU2118977C1
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЙОРГАНИЧЕСКОГО АНТИАДГЕЗИОННОГО ПОКРЫТИЯ ХОЛОДНОГО ОТВЕРЖДЕНИЯ 1992
  • Лотарев М.Б.
  • Малышева Н.С.
  • Лукьянов А.Д.
  • Зверев В.В.
  • Школьник О.В.
  • Шульга Т.М.
  • Гаврилов И.К.
  • Андреев В.П.
  • Козырева С.В.
  • Душин М.И.
  • Шебанов В.В.
  • Губина С.Ю.
RU2080995C1
АНТИАДГЕЗИОННОЕ ПОКРЫТИЕ 2012
  • Белобров Николай Степанович
  • Дочилов Николай Егорович
  • Ковалев Валерий Павлович
  • Онучина Наталия Анатольевна
  • Половникова Надежда Викторовна
  • Таронов Петр Иванович
RU2502771C1

Реферат патента 2017 года СПОСОБ МОЛЛИРОВАНИЯ ИЗДЕЛИЙ ИЗ СТЕКЛА И АНТИАДГЕЗИОННЫЙ СОСТАВ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к формованию стеклопакетов сложной формы. На рабочую и технологическую поверхности стекол стеклопакета наносят разделительный состав, сушат его. После нанесения разделительного состава и сушки дополнительно наносят на технологическую часть стеклозаготовок предварительно гомогенизированный антиадгезионный состав. Состав включает, мас.%: полиорганосилоксан 5÷85; растворитель 5÷90; мелкодисперсный углерод 5÷80. Далее комплектуют стеклопакет с последующим его нагревом до температуры размягчения. 2 н. и 4 з.п. ф-лы, 17 пр.

Формула изобретения RU 2 635 419 C2

1. Способ моллирования стеклозаготовок путем нанесения разделительного состава на рабочую и технологическую поверхности стекол, сушки его, комплектования стеклопакета, нагрева его в печи до температуры размягчения стекла, выдержки при этой температуре, последующего отжига и охлаждения, отличающийся тем, что после нанесения разделительного состава и сушки дополнительно наносят на технологическую часть стеклозаготовок предварительно гомогенизированный антиадгезионный состав с последующей его сушкой, при этом антиадгезионный состав включает полиорганосилоксан, растворитель и мелкодисперсный углерод в следующем соотношении (мас. %):

полиорганосилоксан 5÷85;

растворитель 5÷90;

мелкодисперсный углерод 5÷80.

2. Способ по п. 1, отличающийся тем, что антиадгезионный состав гомогенизируют с помощью диспергатора, шаровой мельницы или краскотерки.

3. Антиадгезионный состав для моллирования стеклозаготовок, включающий полиорганосилоксан, растворитель и мелкодисперсный углерод, отличающийся тем, что он содержит указанные выше компоненты в следующем соотношении (мас. %):

полиорганосилоксан 5÷85;

растворитель 5÷90;

мелкодисперсный углерод 5÷80.

4. Антиадгезионный состав по п. 3, отличающийся тем, что в качестве мелкодисперсного углерода используют графит и/или сажу.

5. Антиадгезионный состав по п. 3, отличающийся тем, что в качестве растворителя используют нефрас, метилтретбутиловый эфир, изобутанол, этанол, воду или их смесь.

6. Антиадгезионный состав по п. 3, отличающийся тем, что в качестве полиорганосилоксана используют ПДМС-50, ПДМС-200, ПДМС-350 или ПДМС-1000.

Документы, цитированные в отчете о поиске Патент 2017 года RU2635419C2

US 4301197 A, 17.11.1981
Способ одновременного моллирования нескольких комплектов стекол 1978
  • Пестов Александр Васильевич
  • Бурыкин Владимир Николаевич
  • Дорохов Евгений Сергеевич
SU743954A1
Способ переформования листового стекла 1976
  • Пестов Александр Васильевич
  • Хрычев Анатолий Родионович
SU660946A1
СПОСОБ ОДНОВРЕМЕННОГО МОЛЛИРОВАНИЯ НЕСКОЛЬКИХ СТЕКОЛ 1984
  • Севрюк Э.Б.
  • Пестов А.В.
SU1284180A1
DE 2952756 A, 02.07.1981.

RU 2 635 419 C2

Авторы

Солинов Владимир Федорович

Солинов Евгений Федорович

Муравьев Эрнест Николаевич

Скрозникова Вера Викторовна

Андриянова Ксения Сергеевна

Петроградский Артем Викторович

Маркачева Анна Александровна

Даты

2017-11-13Публикация

2015-09-30Подача