Изобретение относится к области газовой промышленности, в частности к магистральному транспорту газа, и может быть использовано для регулирования процесса охлаждения компримированного газа при эксплуатации трехцеховых компрессорных станций в условиях сниженной загрузки.
Известен способ компримирования газа при помощи системы охлаждения, состоящей из двухсекционных аппаратов воздушного охлаждения газа, которые могут эксплуатироваться при включенных одном или двух вентиляторах и в режиме свободной конвекции при отключенных обоих вентиляторах в каждой теплообменной секции. (Козаченко А.Н. Эксплуатация компрессорных станций магистральных газопроводов / М.: Нефть и газ, 1999, 337 с.).
Недостаток прототипа заключается в том, что данная система охлаждения, являясь стандартизованным и общепринятым в газовой промышленности оборудованием, которое имеет достаточный потенциал для модернизации и энергосбережения за счет реализации различных вариантов обеспечения тепловой эффективности работы аппаратов воздушного охлаждения газа без принципиальных конструктивных изменений и нарушений теплового и энергетического балансов компрессорной станции, по факту используется без учета оценки этих вариантов и соответствующей оптимизации - в номинальном режиме эксплуатации.
Техническим результатом предлагаемого изобретения является достижение равномерности распределения загрузки цеховых групп аппаратов воздушного охлаждения газа, в том числе и не участвующих в процессе компримирования и остановленных в резерв цехов, снижение энергетических потерь на линейном участке магистрального газопровода между двумя компрессорными станциями при одновременном уменьшении затрат на электроэнергию.
Технический результат достигается тем, что в действующей схеме компрессорной станции, включающей три компрессорных цеха с пылеуловителями, аппаратами воздушного охлаждения, входными, выходными газопроводами и трубопроводной арматурой, осуществляют монтаж межцеховых перемычек с трубопроводной арматурой между выходным газопроводом из аппаратов воздушного охлаждения газа первого цеха и входным газопроводом в аппараты воздушного охлаждения газа остановленного в резерв второго цеха и между выходным газопроводом из аппаратов воздушного охлаждения газа второго цеха и входным газопроводом в аппараты воздушного охлаждения газа остановленного в резерв третьего цеха, а также перевод цеховых групп аппаратов воздушного охлаждения газа с режима работы с двумя включенными вентиляторами на режим работы с одним включенным вентилятором.
Исходя из анализа фактических эксплуатационных характеристик коэффициенты тепловой эффективности аппаратов воздушного охлаждения газа, рассчитанные из соотношения величин фактического и паспортного тепловых потоков при работе с включенными одним и двумя вентиляторами составляют соответственно 0,77 и 0,80. (Байков И.Р., Китаев С.В., Шаммазов И.А. Методы повышения энергетической эффективности трубопроводного транспорта природного газа / СПб.: Недра, 2008. - С. 378).
Следовательно, в условиях сниженной загрузки компрессорной станции энергоэффективным мероприятием при эксплуатации системы охлаждения является отключение части непроизводительных вентиляторов с переводом режима работы аппаратов воздушного охлаждения газа с двумя включенными вентиляторами на режим работы с одним включенным вентилятором и перераспределением тепловой мощности между цеховыми группами путем использования межцеховых перемычек.
На чертеже представлена принципиальная схема системы охлаждения компримированного газа на трехцеховой компрессорной станции.
Пример 1. В действующей схеме компрессорной станции «Шаран», включающей три компрессорных цеха с пылеуловителями, аппаратами воздушного охлаждения газа, входными, выходными газопроводами и трубопроводной арматурой осуществляют монтаж межцеховых перемычек 1 и 2 с трубопроводной арматурой 3 и 4 (DN 1000, PN 16) между выходным газопроводом 5 из аппаратов воздушного охлаждения газа 6 первого цеха 7 и входным газопроводом 8 в аппараты воздушного охлаждения газа 9 остановленного в резерв второго цеха 10, между выходным газопроводом 11 из аппаратов воздушного охлаждения газа 9 второго цеха 10 и входным газопроводом 12 в аппараты воздушного охлаждения газа 13 тоже остановленного в резерв третьего цеха 14 (на фигуре перемычки 1 и 2 показаны жирной линией) для повышения тепловой мощности. Подключение межцеховых перемычек к действующим газопроводам осуществлено через четыре сварных равнопроходных тройника (DN 1000×24 - 1000×24, PN 16). Позицией 15 обозначен выходной газопровод аппаратов воздушного охлаждения газа 13 третьего цеха 14, позицией 16 обозначен входной газопровод в аппараты воздушного охлаждения газа 6 первого цеха 7.
В трехниточном коридоре магистральных газопроводов 17, 18 и 19 природный газ транспортируется по магистральным газопроводам 17 и 18, минуя компрессорные цеха. Из магистрального газопровода 17 через открытый восточный охранный кран 20 природный газ поступает через входной кран 21 и пылеуловители 22 по входному газопроводу 23 на компримирование в первый компрессорный цех 7. Далее природный газ проходит по входному газопроводу 16 в аппараты воздушного охлаждения газа 6, в которых включены по одному вентилятору в каждой теплообменной секции. После охлаждения по выходному газопроводу 5 из аппаратов воздушного охлаждения газа 6 природный газ направляется через открытый кран 3 и перемычку 1 во входной газопровод 8 в аппараты воздушного охлаждения газа 9 остановленного в резерв второго цеха 10 при закрытом входном кране 24, остановленных пылеуловителях 25 и входном газопроводе 26 во второй компрессорный цех 10. В аппаратах воздушного охлаждения газа 9 также включены по одному вентилятору в каждой теплообменной секции.
После дополнительного охлаждения в аппаратах воздушного охлаждения газа 9 компримированный в первом цехе 7 природный газ по выходному газопроводу 11 направляется через открытый кран 4 и перемычку 2 во входной газопровод 12 в аппараты воздушного охлаждения газа 13 тоже остановленного в резерв третьего цеха 14 при закрытом входном кране 27, остановленных пылеуловителях 28 и входном газопроводе 29 в третий компрессорный цех 14. В аппаратах воздушного охлаждения газа 13 также включены по одному вентилятору в каждой теплообменной секции.
После дополнительного охлаждения в аппаратах воздушного охлаждения газа 13 компримированный природный газ по выходному газопроводу 15 через открытые выходной кран 30 и западный охранный кран 31 направляется в трассу магистрального газопровода 19.
Положение кранов 33, 34, 35, 36, 38, 40, 43 и 44 - «открыт», положение кранов 32, 37, 39, 41 и 42 - «закрыт».
Усредненная величина коэффициента тепловой эффективности при использовании аппаратов воздушного охлаждения газа трех цехов с одним включенным вентилятором в каждой теплообменной секции составляет условно 2,31 цеха при затратах электроэнергии условно на 1,5 цеха.
Предложенное изобретение позволяет рационально использовать энергоресурсы, при этом не требует крупных финансовых затрат для внедрения и удешевляет себестоимость товарного газа.
Изобретение может найти широкое применение в газовой промышленности при эксплуатации основного оборудования компрессорной станции.
название | год | авторы | номер документа |
---|---|---|---|
Система охлаждения компримированного газа на трёхцеховой компрессорной станции | 2023 |
|
RU2820931C1 |
Способ выработки природного газа из прилегающих к компрессорной станции участков магистрального газопровода перед выводом их в ремонт | 2019 |
|
RU2710106C1 |
СПОСОБ ОТБОРА ПРИРОДНОГО ГАЗА ИЗ ОТКЛЮЧЕННОГО УЧАСТКА МАГИСТРАЛЬНОГО ГАЗОПРОВОДА В МНОГОНИТОЧНОЙ СИСТЕМЕ (Варианты) И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (Варианты) | 2016 |
|
RU2619669C1 |
СПОСОБ ОТКАЧКИ ПРИРОДНОГО ГАЗА ИЗ ОТКЛЮЧЕННОГО УЧАСТКА ГАЗОПРОВОДА В МНОГОНИТОЧНОЙ СИСТЕМЕ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ С ПРИМЕНЕНИЕМ ГАЗОПЕРЕКАЧИВАЮЩИХ АГРЕГАТОВ КОМПРЕССОРНОЙ СТАНЦИИ (ВАРИАНТЫ) | 2010 |
|
RU2447355C2 |
Система откачки газа из отключенного компрессорного цеха магистрального трубопровода | 2019 |
|
RU2731687C1 |
СПОСОБ ОСУШКИ ТЕХНОЛОГИЧЕСКИХ ТРУБОПРОВОДОВ КОМПРЕССОРНОГО ЦЕХА | 2022 |
|
RU2809523C1 |
МОДУЛЬНАЯ КОМПРЕССОРНАЯ СТАНЦИЯ | 2011 |
|
RU2463515C1 |
Способ откачки газа из оборудования компрессорных цехов магистрального газопровода, соединенных межцеховыми перемычками, и система для ее осуществления | 2020 |
|
RU2754934C1 |
СПОСОБ ОХЛАЖДЕНИЯ КОМПРИМИРОВАННОГО ГАЗА | 2020 |
|
RU2757518C1 |
СПОСОБ ОТБОРА ГАЗА ПУСКОВОГО, ТОПЛИВНОГО, ИМПУЛЬСНОГО И ДЛЯ СОБСТВЕННЫХ НУЖД С ТЕХНОЛОГИЧЕСКИХ КОММУНИКАЦИЙ КОМПРЕССОРНЫХ ЦЕХОВ КОМПРЕССОРНОЙ СТАНЦИИ В КАЧЕСТВЕ ТОПЛИВНОГО ПРИ ВЫВОДЕ СМЕЖНОГО ЦЕХА В РЕМОНТ | 2016 |
|
RU2641770C2 |
Изобретение относится к области газовой промышленности, в частности к магистральному транспорту газа, и может быть использовано для регулирования процесса охлаждения компримированного газа при эксплуатации трехцеховых компрессорных станций в условиях сниженной загрузки. В действующей схеме системы охлаждения компрессорной станции осуществляют монтаж межцеховых перемычек с трубопроводной арматурой между выходным газопроводом из аппаратов воздушного охлаждения газа (АВОГ) первого цеха и входным газопроводом в АВОГ остановленного в резерв второго цеха, выходным газопроводом из АВОГ второго цеха и входным газопроводом в АВОГ остановленного в резерв третьего цеха для повышения тепловой мощности, а также перевод цеховых групп АВОГ с режима работы с двумя включенными вентиляторами на режим работы с одним включенным вентилятором. Технический результат: достижение равномерности распределения загрузки цеховых групп АВОГ, в том числе и не участвующих в процессе компримирования и остановленных в резерв цехов, снижение энергетических потерь на линейном участке магистрального газопровода между двумя компрессорными станциями при одновременном уменьшении затрат на электроэнергию. 1 ил.
Способ охлаждения компримированного газа на трехцеховой компрессорной станции, характеризующийся тем, что в действующей схеме, включающей три компрессорных цеха с пылеуловителями, аппаратами воздушного охлаждения, входными, выходными газопроводами и трубопроводной арматурой, осуществляют монтаж межцеховых перемычек с трубопроводной арматурой между выходным газопроводом из аппаратов воздушного охлаждения газа первого цеха и входным газопроводом в аппараты воздушного охлаждения газа остановленного в резерв второго цеха и между выходным газопроводом из аппаратов воздушного охлаждения газа второго цеха и входным газопроводом в аппараты воздушного охлаждения газа остановленного в резерв третьего цеха, а также осуществляют перевод цеховых групп аппаратов воздушного охлаждения газа с режима работы с двумя включенными вентиляторами на режим работы с одним включенным вентилятором.
Козаченко А.Н | |||
Энергетика трубопроводного транспорта газов | |||
Учебное пособие | |||
М.: ГУП Издательство "Нефть и газ" РГУ нефти и газа им | |||
И | |||
М | |||
Губкина, 2001 | |||
Способ фотографической записи звуковых колебаний | 1922 |
|
SU400A1 |
Шаммазов А.М., Александров В.Н., Гольянов А.И | |||
и др | |||
Проектирование и эксплуатация насосных и компрессорных станций | |||
Учебник для вузов, М.: ООО "Недра-Бизнесцентр", 2003 | |||
Катодный усилитель с промежуточными контурами и батарейным коммутатором для цепей сетки | 1923 |
|
SU404A1 |
Эксплуатация и ремонт оборудования насосных и компрессорных станций: учеб | |||
пособие/ С | |||
В | |||
Петров, И | |||
Н | |||
Бирилло | |||
- Ухта : УГТУ, 2014 | |||
Ударно-долбежная врубовая машина | 1921 |
|
SU115A1 |
Эксплуатация и ремонт оборудования насосных и компрессорных станций: учеб | |||
пособие/ В.В | |||
Корж, А.В | |||
Сальников | |||
- Ухта : УГТУ, 2010 | |||
Переносная печь-плита | 1920 |
|
SU184A1 |
Авторы
Даты
2017-11-21—Публикация
2016-11-14—Подача