СПОСОБ ВЫБОРА МОДЕЛИ СТЕНТА ДЛЯ ПРОЦЕДУРЫ СТЕНТИРОВАНИЯ ЦЕРЕБРАЛЬНЫХ АРТЕРИЙ С АНЕВРИЗМОЙ Российский патент 2017 года по МПК A61B6/00 

Описание патента на изобретение RU2636864C2

Предлагаемый способ относится к области инструментов, приспособлений или вспомогательных принадлежностей для хирургии и диагностики и может быть использован в клинической практике для выбора модели стента при проведении процедуры стентирования церебральных артерий с аневризмой.

Аневризма церебральной артерии является одним из наиболее распространенных заболеваний церебрального кровообращения. При лечении этого заболевания наибольшее применение нашли миниинвазивные методы, в частности стентирование. Подобная процедура позволяет нормализовать гемодинамику пораженной артерии и восстановить естественный ток крови. От правильности выбора стента зависит успешность лечения. Выбор необходимой модели стента представляет собой нетривиальную задачу.

По патенту US №7650179 В2, МПК 600/427, 623/1.11, 623/3.3, 623/1.12, 623/1.13, 623/1.1, A61F 2/82, А61В 5/05, А61В 8/06, А61В 19/52, А61В 5/0066, А61В 19/50, А61В 8/12, А61В 6/481, G06T 19/006, A61F 2/82, А61В 6/504, G06T 19/00, А61В 6/50, А61В 6/48, G06T 19/00, А61В 19/52, А61Р 2/82, опубл. 19.01.2010 г. известен способ по планированию процедуры стентирования, состоящий из следующих шагов: определение характеристик пораженного сосуда с помощью 3D изображений области аневризмы; выбор модели стента на основе компьютерного анализа геометрических характеристик пораженной области; генерация виртуальной модели стента и определение наилучшей позиции установки стента; отображение в режиме реального времени 2D изображений пораженной области при проведении процедуры стентирования, совмещенное с изображением имплантированного виртуального стента. При этом врачом, проводящим процедуру стентирования, основываясь на измеренных размерах пораженной области, выбирается модель и размер стента.

Техническим результатом предложенного способа является новый способ автоматизированного планирования процедуры стентирования, включающий процедуру выбора наиболее подходящего стента для проведения лечения и позволяющий повысить точность выбора размера и положения стента на основе компьютерного анализа пораженной области артерии.

К недостаткам данного способа следует отнести то, что при выборе стента не учитываются последующие гемодинамические изменения в пораженной области, вызванные установкой стента, что, в свою очередь, может привести к тому, что ожидаемый лечебный эффект от установки стента не будет достигнут.

По патенту US №8897513 В2, МПК G06K 9/00, G06T 7/00, G06T 2207/30101, G06T 7/0016, G06T 7/0012, опубл. 25.11.2014 известен способ выбора стента, основанный на определении напряжения стенки кровеносного сосуда. В способе используется диастолическое и систолическое изображение пораженного сосуда. Напряжение в сосуде определяется с помощью сравнения размера сосуда в момент окончания диастолы и в момент окончания систолы. На основании величины напряжения стенки сосуда определяется необходимый стент. Техническим результатом предложенного способа является новый способ выбора стента для имплантации в пораженный участок сосуда, основанный на определении величины напряжения стенки сосуда, и позволяющий повысить точность выбора стента, что приводит к значительному снижению риска возникновения рестеноза в сосуде.

Недостатком данного способа является то, что при выборе стента не учитываются последующие гемодинамические изменения в пораженной области, вызванные установкой стента, что в, свою очередь, может привести к тому, что ожидаемый лечебный эффект от установки стента не будет достигнут.

Ближайшим аналогом (прототипом) разработанного способа является способ оценки размера стента (ЕР №1700566 А1, МПК A61F 2/82, А61В 5/107, А61В 5/1076, A61F 2/82, A61F 2/82, A61B 5/107, опубл. 13.09.2006), содержащий ввод данных о пораженной артерии, вычисление размера стента, основанное на размере и типе артерии, проверку доступности стента, вывод данных о стенте. Способ основан на определении размера стента согласно предложенной авторами эмпирической формуле 0.9*(prox+distal)/2, где рrох - проксимальный размер артерии, dist - дистальный размер артерии. Техническим результатом предложенного способа является новый способ выбора стента для имплантации, основанный на предложенной авторами эмпирической формуле определения необходимого размера имплантируемого стента и позволяющий повысить точность выбора размера стента, основываясь на геометрических характеристиках пораженной артерии.

К недостаткам прототипа следует отнести то, что при выборе стента не учитываются последующие гемодинамические изменения в пораженной области, вызванные установкой стента, что, в свою очередь, может привести к тому, что ожидаемый лечебный эффект от установки стента не будет достигнут.

Технической задачей предлагаемого способа является повышение точности выбора модели стента для проведения процедуры стентирования церебральной артерии за счет применения методов экспериментального и математического моделирования.

Поставленная техническая задача достигается тем, что предложен способ выбора модели стента для процедуры стентирования церебральных артерий с аневризмой, включающий ввод данных об артерии; вычисление размера стента, основанное на данных выбранной артерии, содержащих проксимальный и дистальный диаметр, тип артерии; проверку доступности стента; выбор модели стента, основанный на размере и доступности стента; вывод данных о выбранной модели стента.

Новым в предложенном способе является то, что с помощью КТ-ангиографии определяется форма и размер церебральной аневризмы; с помощью экспериментальной установки происходит измерение скорости крови в индивидуализированной реалистичной модели аневризмы пациента со стентом и без стента; с помощью 3D лазерного допплеровского анемометра измеряются три компоненты скорости крови в сечениях модели пораженного церебрального сосуда; с помощью математического моделирования, на основе разработанной авторами математической модели локальной гемодинамики церебральной артерии определяются изменения трех компонент скорости крови и давления в выбранной церебральной артерии при наличии различных моделей стентов; на основе рассчитанных гемодинамических параметров и пристеночного напряжения сдвига оцениваются изменения гемодинамики в области аневризмы пораженного сосуда, что позволяет повысить точность выбора модели стента для процедуры стентирования церебральных артерий с аневризмой.

На фиг. 1 представлена схема предложенного способа выбора модели стента для процедуры стентирования церебральных артерий с аневризмой. Предложенный способ может быть представлен в виде следующих этапов.

1. Ввод данных о пораженной церебральной артерии: положение, длина, толщина стенки.

2. Диагностика церебральной аневризмы с помощью КТ-ангиографии. Определение формы церебральной артерии и размера аневризмы.

3. Обработка и сегментация данных КТ-ангиографии для получения геометрической 3D модели пораженной церебральной артерии пациента.

4. На основе полученной 3D модели пораженной церебральной артерии пациента определяется ее проксимальный и дистальный диаметр.

5. По эмпирической формуле

0.9⋅(prox+dist)/2,

где рrох - проксимальный диаметр; dist - дистальный диаметр, вычисляется необходимый размер стента.

6. Проверка наличия стентов требуемого размера, подбор наиболее близкого размера стента из перечня стандартных размеров.

7. Построение реалистичной силиконовой модели пораженного сосуда с использованием метода стереолитографии на основе полученной ранее геометрической 3D модели церебральной артерии.

8. Взятие образца крови пациента и измерение ее реологических свойств с помощью ротационного вискозиметра. Определение параметров нелинейной зависимости вязкости крови пациента от скорости сдвига.

9. Определение с помощью УЗИ-датчика объемного расхода крови в начале входного сегмента пораженной церебральной артерии.

10. Подготовка прозрачного кровезаменителя для использования в экспериментальной установке со схожими с кровью пациента реологическими свойствами.

11. Программирование поршневого насоса для воспроизведения индивидуальной формы пульсовой волны пациента. Измерение с помощью 3D лазерного допплеровского анемометра трех компонент скорости в сечениях модели пораженного церебрального сосуда. Предварительная обработка экспериментальных данных.

12. Имплантация в силиконовую модель пораженного сосуда тестового образца стента. Измерение с помощью 3D лазерного допплеровского анемометра трех компонент скорости в сечениях модели пораженного церебрального сосуда. Предварительная обработка экспериментальных данных.

13. Сравнение полученных экспериментальных данных до и после имплантации тестового образца стента. Определение изменений параметров гемодинамики в области аневризмы выбранной церебральной артерии, вызванных установкой стента.

14. Модификация разработанной авторами математической модели локальной гемодинамики церебральной артерии с целью ее индивидуализации под конкретного пациента. Задание индивидуальной формы расчетной области и индивидуальных реологических свойств крови пациента.

15. Расчет уравнений индивидуализированной модели локальной гемодинамики пораженной церебральной аневризмы со стентом и без стента. По окончании расчета будет определено трехмерное распределение скорости крови и давления в области аневризмы выбранной церебральной артерии, а также вычислено значение пристеночного напряжения сдвига

16. Проверка адекватности результата моделирования путем сравнения расчетных данных с данными натурного эксперимента. Определение точности используемой индивидуализированной математической модели локальной гемодинамики церебральной артерии.

17. В случае необходимости, внесение изменений в математическую модель локальной гемодинамики церебральной артерии и повторение шагов 14-16.

18. После того как доказана адекватность разработанной индивидуализированной математической модели локальной гемодинамики пораженной церебральной артерии, проводится анализ изменений гемодинамических параметров в области аневризмы церебральной артерии, вызванных установкой стента.

19. Из имеющегося набора стентов последовательно для каждой модели стента строится его геометрическая модель, которая виртуально имплантируется в модель церебральной артерии пациента с аневризмой. Для каждой модели стента повторяются шаги 14-15.

20. По окончании расчетов локальной гемодинамики в области аневризмы при установке всех вариантов моделей стента, происходит анализ изменений кровотока, вызванных имплантацией каждой конкретной модели стента.

21. На основе анализа полученных результатов и экспертной оценки врача-нейрохирурга принимается решения о выборе модели стента для процедуры стентирования церебральных артерий с аневризмой. При этом учитывается индивидуальная форма пораженного сосуда и реологические свойства крови пациента.

22. Осуществляется вывод информации о модели и размере выбранного стента.

Используемые в предложенном способе методы экспериментального и математического моделирования позволяют повысить точность выбора модели стента для процедуры стентирования церебральных артерий с аневризмой. При проведении экспериментальных измерений используется реалистичная индивидуальная модель церебральной артерии с аневризмой, повторяющая морфологию церебральной артерии пациента и позволяющая осуществить высокоточные измерения скорости крови с помощью 3D лазерного допплеровского анемометра. Данные экспериментальных измерений служат основой для проверки адекватности разработанной авторами индивидуализированной модели локальной гемодинамики пораженной церебральной артерии с аневризмой. С помощью индивидуализированной математической модели проводится серия виртуальных экспериментов по имплантации различных моделей стентов в пораженную церебральную артерию с аневризмой. Результаты каждого виртуального эксперимента используются для оценки гемодинамических изменений в области аневризмы, вызванных установкой каждой конкретной модели стента, что позволяет существенно повысить точность выбора модели стента для процедуры стентирования церебральных артерий с аневризмой.

Предлагаемый способ был апробирован при выборе модели стента для процедуры стентирования внутренней сонной артерии с аневризмой. С помощью КТ-ангиографии была определена форма и размер аневризмы внутренней сонной артерии. По эмпирической формуле (пункт 5) был определен размер стента - 5 мм. Используя специально изготовленный кровезаменитель, с помощью экспериментальной установки было измерено распределение скорости крови в индивидуализированной реалистичной модели аневризмы внутренней сонной артерии пациента со стентом и без стента. С помощью 3D лазерного допплеровского анемометра были измерены три компоненты скорости крови в сечениях модели внутренней сонной артерии, расстояние между которыми составляет 4 мм, величина шага измерения в плоскости сечениях составляла 0.2 мм, время измерения скорости в каждой точке - 7 секунд. С помощью математического моделирования на основе разработанной математической модели локальной гемодинамики церебральной артерии были рассчитаны изменения трех компонент скорости крови и давления в течение 7 секунд во внутренней сонной артерии при наличии различных моделей стентов. На основе рассчитанных гемодинамических параметров и пристеночного напряжения сдвига были оценены изменения гемодинамики в области аневризмы внутренней сонной артерии. В результате использования предлагаемого метода путем сравнительного анализа была найдена модель стента (SILKstent, фирмы BaltExtrusion), которая позволяет максимально снизить среднюю скорость течения крови внутри полости аневризмы (на 94%), при этом восстанавливая естественный ток крови во внутренней сонной артерии.

Предлагаемый способ может быть использован в клинической практике при выборе модели стента для проведения процедуры стентирования церебральной артерии с аневризмой и для прогнозирования послеоперационного состояния церебральной гемодинамики пациента.

Похожие патенты RU2636864C2

название год авторы номер документа
СПОСОБ ВЫБОРА ПОТОКОНАПРАВЛЯЮЩЕГО СТЕНТА 2016
  • Фролов Сергей Владимирович
  • Синдеев Сергей Вячеславович
  • Потлов Антон Юрьевич
RU2636189C2
СПОСОБ ОЦЕНКИ ФАКТОРОВ РИСКА РАЗРЫВА ЦЕРЕБРАЛЬНОЙ АНЕВРИЗМЫ ПОСЛЕ УСТАНОВКИ ПОТОКОНАПРАВЛЯЮЩЕГО СТЕНТА 2020
  • Фролов Сергей Владимирович
  • Фролова Мария Сергеевна
  • Потлов Антон Юрьевич
RU2768150C1
СПОСОБ ЗАЩИТЫ МОЗГА ОТ ЭМБОЛИИ ПРИ СТЕНТИРОВАНИИ ВНУТРЕННЕЙ СОННОЙ АРТЕРИИ 2013
  • Никифоров Василий Анатольевич
  • Шахов Борис Евгеньевич
RU2530724C1
СПОСОБ ПРОФИЛАКТИКИ СИНДРОМА ЦЕРЕБРАЛЬНОЙ ГИПЕРПЕРФУЗИИ ВО ВРЕМЯ СТЕНТИРОВАНИЯ КАРОТИДНЫХ АРТЕРИЙ 2017
  • Хафизов Тимур Назирович
  • Шаймуратов Ильшат Хасаньянович
  • Шайхрахманова Айгуль Фанильевна
  • Кретов Евгений Иванович
  • Логинов Максим Олегович
  • Гиниятуллин Сергей Мухаметович
  • Шарафутдинов Марат Равильевич
  • Загидуллин Булат Искандарович
  • Шарипов Ирик Илдарович
  • Галимов Рустам Мидхатович
  • Хафизов Радик Рашитович
  • Идрисов Ильяс Альбертович
RU2639816C1
Способ выбора системы защиты головного мозга от эмболии при стентировании бифуркации общей сонной артерии в зависимости от особенностей стенотического поражения 2015
  • Чудновец Лев Георгиевич
  • Плечев Владимир Вячеславович
  • Пустовойтов Сергей Сергеевич
RU2609206C1
СПОСОБ РАННЕЙ ДИАГНОСТИКИ ДИСТАЛЬНОЙ ЭМБОЛИИ ПОСЛЕ КАРОТИДНОГО СТЕНТИРОВАНИЯ 2017
  • Хафизов Тимур Назирович
  • Шаймуратов Ильшат Хасаньянович
  • Шайхрахманова Айгуль Фанильевна
  • Кретов Евгений Иванович
  • Логинов Максим Олегович
  • Гиниятуллин Сергей Мухаметович
  • Шарафутдинов Марат Равильевич
  • Загидуллин Булат Искандарович
  • Шарипов Ирик Илдарович
  • Хафизов Радик Рашитович
  • Идрисов Ильяс Альбертович
RU2639861C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ОПАСНОСТИ ЭМБОЛОГЕННОГО РАЗРЫВА НЕСТАБИЛЬНОЙ КАРОТИДНОЙ АТЕРОСКЛЕРОТИЧЕСКОЙ БЛЯШКИ 2019
  • Майстренко Дмитрий Николаевич
  • Коссович Леонид Юрьевич
  • Иванов Дмитрий Валерьевич
  • Доль Александр Викторович
  • Скрипаченко Ксения Константиновна
  • Станжевский Андрей Алексеевич
  • Соловьев Алексей Викторович
  • Чегемов Арсен Анатольевич
  • Тлостанова Марина Сергеевна
  • Генералов Михаил Игоревич
  • Олещук Анна Никитична
  • Винокуров Алексей Юрьевич
  • Кокорин Денис Михайлович
  • Гудзь Анна Алексеевна
  • Попов Сергей Александрович
  • Майстренко Алексей Дмитриевич
  • Боровик Владимир Владимирович
  • Чечулов Павел Валерьевич
RU2723741C1
СПОСОБ ДВОЙНОЙ ЗАЩИТЫ ГОЛОВНОГО МОЗГА ПРИ СТЕНТИРОВАНИИ КАРОТИДНЫХ АРТЕРИЙ У ПАЦИЕНТОВ С ВЫСОКИМ РИСКОМ ЭМБОЛИИ 2017
  • Хафизов Тимур Назирович
  • Николаева Ирина Евгеньевна
  • Шаймуратов Ильшат Хасаньянович
  • Шайхрахманова Айгуль Фанильевна
  • Кретов Евгений Иванович
  • Загидуллин Булат Искандарович
  • Шарипов Ирик Илдарович
  • Хафизов Радик Рашитович
  • Идрисов Ильяс Альбертович
RU2639815C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ОПАСНОСТИ ЭМБОЛОГЕННОГО РАЗРЫВА КАРОТИДНОЙ АТЕРОСКЛЕРОТИЧЕСКОЙ БЛЯШКИ 2019
  • Майстренко Дмитрий Николаевич
  • Коссович Леонид Юрьевич
  • Иванов Дмитрий Валерьевич
  • Доль Александр Викторович
  • Кириллова Ирина Васильевна
  • Станжевский Андрей Алексеевич
  • Соловьев Алексей Викторович
  • Чегемов Арсен Анатольевич
  • Тлостанова Марина Сергеевна
  • Генералов Михаил Игоревич
  • Олещук Анна Никитична
  • Винокуров Алексей Юрьевич
  • Кокорин Денис Михайлович
  • Гудзь Анна Алексеевна
  • Попов Сергей Александрович
  • Майстренко Алексей Дмитриевич
  • Боровик Владимир Владимирович
  • Чечулов Павел Валерьевич
RU2729733C1
Способ прогнозирования эмболизации сосудов головного мозга при стентировании сонных артерий 2019
  • Танашян Маринэ Мовсесовна
  • Медведев Роман Борисович
  • Гемджян Эдуард Георгиевич
  • Скрылев Сергей Иванович
  • Кротенкова Марина Викторовна
  • Кощеев Александр Юрьевич
RU2707918C1

Иллюстрации к изобретению RU 2 636 864 C2

Реферат патента 2017 года СПОСОБ ВЫБОРА МОДЕЛИ СТЕНТА ДЛЯ ПРОЦЕДУРЫ СТЕНТИРОВАНИЯ ЦЕРЕБРАЛЬНЫХ АРТЕРИЙ С АНЕВРИЗМОЙ

Изобретение относится к медицине, а именно к эндоваскулярной терапии. С помощью ангиографии определяют форму и размер церебральной аневризмы. Измеряют скорость крови в модели аневризмы пациента со стентом и без стента. Определяют показатели локальной гемодинамики: трехмерное распределение скорости крови, давление в области аневризмы и значение пристеночного напряжения сдвига. Затем с помощью компьютерного моделирования на математической модели локальной гемодинамики церебральной артерии определяют изменения указанных показателей локальной гемодинамики в выбранной церебральной артерии при использовании различных моделей стентов. Способ выбора модели стента для процедуры стентирования церебральных артерий с аневризмой, включающий сбор данных об артерии: ее проксимальном и дистальном диаметрах, типе артерии, вычисление размера стента, основанного на данных выбранной артерии, и осуществление выбора модели стента, основанное на размере и доступности стента. Путем сравнительного анализа выбирают модель стента, позволяющего максимально снизить среднюю скорость течения крови внутри полости аневризмы и восстановить ток крови по церебральной артерии. 1 ил.

Формула изобретения RU 2 636 864 C2

Способ выбора модели стента для процедуры стентирования церебральных артерий с аневризмой, включающий сбор данных об артерии: ее проксимальном и дистальном диаметрах, типе артерии, вычисление размера стента, основанного на данных выбранной артерии, и осуществление выбора модели стента, основанное на размере и доступности стента, отличающийся тем, что при этом с помощью ангиографии определяют форму и размер церебральной аневризмы, измеряют скорость крови в модели аневризмы пациента со стентом и без стента, определяют показатели локальной гемодинамики: трехмерное распределение скорости крови, давление в области аневризмы и значение пристеночного напряжения сдвига, затем с помощью компьютерного моделирования на математической модели локальной гемодинамики церебральной артерии определяют изменения указанных показателей локальной гемодинамики в выбранной церебральной артерии при использовании различных моделей стентов и путем сравнительного анализа выбирают модель стента, позволяющего максимально снизить среднюю скорость течения крови внутри полости аневризмы и восстановить ток крови по церебральной артерии.

Документы, цитированные в отчете о поиске Патент 2017 года RU2636864C2

Устройство для контроля стыковки разъемов 1989
  • Иванская Альбина Анатольевна
  • Зиньковский Владимир Андреевич
  • Бакай Ирина Александровна
SU1700566A1
US8965084 B2, 24.02.2015
ПОМОЩЬ В ПОДБОРЕ РАЗМЕРА УСТРОЙСТВ В ПРОЦЕССЕ ОПЕРАТИВНЫХ ВМЕШАТЕЛЬСТВ 2010
  • Флоран Рауль
RU2556535C2
ДЕМИН В
В
и др., Первый клинический опыт имплантации стенозов нового поколения -скаффолдов под контролем оптческой когерентной томографии,Вестник рентгенологии и радиологии, 2013, 2, с
Способ образования коричневых окрасок на волокне из кашу кубической и подобных производных кашевого ряда 1922
  • Вознесенский Н.Н.
SU32A1
XIANG J., et al, High-fidelity virtual stenting: modeling of flow diverter deployment for hemodynamic characterization of complex intracranial aneurysms, J Neurosurg
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1

RU 2 636 864 C2

Авторы

Фролов Сергей Владимирович

Синдеев Сергей Вячеславович

Потлов Антон Юрьевич

Даты

2017-11-28Публикация

2015-10-20Подача