Способ производства сжиженного природного газа Российский патент 2017 года по МПК F25J1/00 

Описание патента на изобретение RU2636966C1

Изобретение относится к газовой промышленности и криогенной технике, конкретно к технологиям сжижения природного газа на газораспределительных станциях.

Известен способ производства сжиженного газа (патент РФ №2247908 C1, МПК 7 F25J 1/00, опубл. 10.03.2005 г. Бюл. №7), включающий разделение потока газа с газораспределительной станции (ГРС) на многочисленные потоки, охлаждение и очистку газа от примесей методом вымораживания в рекуперативном и предварительном теплообменниках, дросселирование газа, получение горячего газа в вихревой трубе на отогрев теплообменников.

Недостатками указанного способа оказывается то, что не используются в полной мере преимущества детандерного цикла в контуре охлаждения и сжижения газа и, соответственно, не будет обеспечена стабильность производства продукции из-за отсутствия возможности регулирования оптимальной температуры.

В известном способе раздачи природного газа с одновременной выработкой сжиженного газа при транспортировании потребителю из магистрального трубопровода высокого давления в трубопровод низкого давления (патент РФ №2534832 С2, МПК F17D 1/07, F25B 11/02, F25J 1/00, опубл. 10.12.2014 г. Бюл. №34) подаваемый газ из магистрального трубопровода расширяется в турбодетандере, после которого охлажденный газ проходит теплообменники и с низким давлением поступает к потребителям, при этом более полно используется полученная механическая энергия при расширении от перепада давлений в магистральном трубопроводе высокого давления и трубопроводе низкого давления.

Недостатком способа может оказаться то, что полностью не решен вопрос о кристаллизации примесей природного газа, выпадающих при работе указанного оборудования.

Наиболее близким к предлагаемому способу является способ производства сжиженного природного газа и комплекс для его реализации (патент РФ №2541360 С1, МПК F25J 1/00), включающий отбор газа из магистрального трубопровода, очистку от механических частиц, осушку, разделение на продукционный и технологический потоки, один из которых проходит очистку от CO2, охлаждается, для получения парожидкостной смеси направляется через дроссель, жидкая фаза отделяется и поступает к потребителю СПГ, другой поток проходит через детандер, жидкая фаза дополнительно переохлаждается перед подачей в емкость потребителя.

Недостатками являются использование дополнительных веществ (растворителей или абсорберов) для поглощения CO2; безвозвратная потеря диоксида углерода, извлеченного из природного газа; многостадийные циклы очистки, что влечет за собой сложность процесса и высокую стоимость оборудования.

Задачей предлагаемого изобретения является создание эффективного способа производства сжиженного природного газа на газораспределительной станции (ГРС), позволяющего повысить производительность при снижении стоимости оборудования и уменьшить количество содержащегося в природном газе CO2.

Указанная задача решается тем, что в способе производства сжиженного природного газа, включающем подачу потока сжатого природного газа из магистрального трубопровода высокого давления со входа газораспределительной станции (ГРС), разделение потока на продукционный и технологический потоки, расширение технологического потока в детандере с совершением внешней работы, теплообмен в основном и предварительном теплообменниках и подачу его с низким давлением потребителю, при котором продукционный поток охлаждают за счет нагрева технологического с образованием газожидкостной смеси, дополнительно охлаждают и расширяют в дроссельном вентиле, на выходе из которого отделяют жидкую фазу с помощью сепаратора, которую направляют в хранилище или потребителям сжиженного природного газа (СПГ), оставшуюся после отделения часть потока смешивают с основным технологическим потоком и направляют на холодный вход теплообменника, согласно изобретению продукционный поток подвергают очистке и осушке в блоке регенеративных теплообменников за счет кристаллизации CO2 на поверхности их пластинок, а после прохождения технологического потока через них осуществляют растворение CO2 и удаляют вместе с потоком газа, подаваемого потребителям в трубопровод низкого давления.

Сущность изобретения иллюстрируется фигурой, на которой приведены следующие обозначения. Установка состоит из отвода от магистрального трубопровода на ГРС, где подается природный газ с высоким давлением, фильтра-пылеуловителя 1 для очистки газа, блока осушки 2 и фильтра 3 для очистки от частиц адсорбента. По линии 4 утилизации тепла установка содержит теплообменник 5. Также установка состоит из блока предварительных регенеративных теплообменников 6, струйного компрессора 7, охладителя масла 8, компрессора 9, для системы смазки турбодетандера масляного бака 10 и насоса 11, непосредственно детандера 12, основного теплообменника 13, регулятора давления 14, сепаратора 15, криогенных насосов 16 и 19, проходных кранов 17 и хранилища СПГ 18.

Реализация способа производства сжиженного природного газа с помощью установки, приведенной на фигуре, происходит следующим образом.

Природный газ поступает из ГРС с высоким давлением и разделяется на два потока. Один из которых проходит через фильтр 1, блок осушки 2 для очистки от влаги и для очистки от частиц адсорбента фильтр 3. Далее поток, осушенный и очищенный, направляется к компрессору 9, где подвергается сжатию. В действие компрессор 9 приводится за счет крутящего момента газового турбодетандера 12, с которым связаны одним валом, размещены в одном корпусе и образуют единый турбодетандерный агрегат. Поток сжатого газа охлаждается в теплообменнике 5 при нагреве второго потока газа, поступившего в линию утилизации тепла 4. Газ из линии 4 далее подается в сеть потребителя. Теплота сжатия компрессора 9 используется дополнительно для подогрева газа в ГРС. После теплообменника 5 газ вновь разделяется на два потока: технологический (для получения холода) и продукционный потоки (для сжижения природного газа).

Технологический поток направляется в детандер 12, подвергается расширению и происходит снижение давления и температуры, газ не сжигается, внутренняя энергия преобразуется в кинетическую энергию, затем в механическую работу, которая в генераторе в свою очередь преобразуется в электрическую энергию, направляется на вал компрессора для сжатия газа. Холодный поток газа после детандера 12 поступает в основной теплообменник 13 для охлаждения продукционного потока. После теплообменника 13 обратный поток проходит через теплообменник 6, растворяя диоксид углерода, и сбрасывается в трубопровод.

Продукционный поток проходит через блок предварительных регенеративных теплообменников 6 для охлаждения и очистки от CO2. Очищенный поток проходит через теплообменник 13 для следующей ступени охлаждения потоком холодного газа детандера 12. Поток проходит через регулятор давления 14 с целью его дальнейшего сжижения при снижении давления и температуры, и парожидкостная смесь попадает в сепаратор 15, где жидкость отделяется от паров. По мере накопления сепаратора СПГ сливается через кран 17 в хранилище 18. При высоком давлении на входе ГРС сжатие продукционного потока не требуется и исключается охлаждение газа после сжатия, соответственно, теплообменник 5 не требуется. Понижение давления в хранилище СПГ 18 производится за счет откачивания паров, которые смешиваются с обратным потоком паров из сепаратора 15, с помощью струйного компрессора.

Основной проблемой является очистка природного газа перед сжижением от диоксида углерода CO2. В низкотемпературном процессе вероятно попадание в область кристаллизации CO2 и образование его твердой фазы. Образование твердой кристаллической фазы в конструкциях низкотемпературного оборудования становится небезопасным фактором и может приводить к опасным последствиям, нарушениям нормальных технологических режимов работы криогенных аппаратов и выводу их из работы. Проходя турбодетандер примеси из газа конденсируются в сопловом узле, стекают и дренируются. Согласно фазовой диаграмме диоксида углерода выпадение твердой фазы при давлении 4,5 МПа произойдет при достижении температуры -52°С. Как правило, в существующих схемах предполагается установка блоков очистки газа от диоксида углерода. В работе вместо дополнительного блока очистки от углекислоты продукционного потока рассматривается использование в качестве предварительного регенеративного теплообменника непрерывного действия, где продукционный поток подвергают очистке и осушке за счет кристаллизации CO2 на поверхности их пластинок, а после прохождения технологического потока через них осуществляют растворение CO2 и удаляют вместе с потоком газа, подаваемого потребителям в трубопровод низкого давления. Для обеспечения непрерывности потока природного газа к потребителям предусматривается использование двух регенераторов.

Проведенные расчеты показали, что при таком способе СПГ может быть получен за счет перепада давления на ГРС, где происходит понижение давления от 3,8 МПа до 0,6 МПа. Природный газ поступает из магистрального трубопровода в комплекс с давлением 3,8 МПа, проходит блок очистки и осушки, сжимается в компрессоре до 4,5 МПа, после теплообменника охлаждается и делится на два потока: продукционный 16% и технологический 84%. Продукционный поток дополнительно очищается в предварительном теплообменнике, а оба потока направляются через основной и предварительный теплообменники. В результате расширения в турбодетандере температура газа понижается до -115°С, что оказывается недостаточным для сжижения газа. Продукционный поток дополнительно дросселируется, и температура газа понижается до -140°С. Производительность установки составит 1,5 т/ч (0,417 кг/с). Преимуществом такой установки оказываются низкие удельные затраты на электроэнергию, так как для сжатия газа в компрессоре используется привод детандера. Мощность, потребляемая при достижении проектной производительности, составит 320 кВт.

Предлагаемая технология производства сжиженного природного газа является энергоэффективной, так как для сжижения применяется детандерный холодильный цикл газа, работающий на основе использования перепада между давлением в магистральном газопроводе и давлением в газораспределительной сети. При производстве СПГ на ГРС проявляется главный недостаток схем с внутренним охлаждением газа - при снижении температуры проявляется кристаллизация, в связи с чем необходимо проводить осушку и очистку всего проходящего через установку газа от диоксида углерода CO2, что решается в предлагаемом способе.

Похожие патенты RU2636966C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА СЖИЖЕННОГО ПРИРОДНОГО ГАЗА И КОМПЛЕКС ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Гайдт Давид Давидович
  • Мишин Олег Леонидович
RU2541360C1
Комплекс сжижения природного газа на газораспределительной станции 2017
  • Белоусов Юрий Васильевич
RU2665787C1
Комплекс сжижения природного газа на газораспределительной станции (варианты) 2018
  • Белоусов Юрий Васильевич
RU2707014C1
СПОСОБ ПОЛУЧЕНИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА В УСЛОВИЯХ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ 2017
  • Рузманов Александр Юрьевич
  • Воронов Владимир Александрович
  • Кириллов Николай Геннадьевич
RU2665088C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА 2017
  • Курочкин Андрей Владиславович
RU2692614C1
Комплекс сжижения природного газа на газораспределительной станции 2018
  • Белоусов Юрий Васильевич
RU2689505C1
Способ производства сжиженного природного газа и компримированного природного газа на газораспределительной станции и комплекс (варианты) для его осуществления 2019
  • Белоусов Юрий Васильевич
RU2719533C1
КОМПЛЕКС ДЛЯ РЕДУЦИРОВАНИЯ, СЖИЖЕНИЯ И КОМПРИМИРОВАНИЯ ПРИРОДНОГО ГАЗА (ВАРИАНТЫ) 2017
  • Курочкин Андрей Владиславович
RU2673972C1
Способ сжижения природного газа по циклу частичного сжижения за счет перепада давления и установка для его осуществления 2018
  • Соболев Евгений Игоревич
RU2678236C1
УСТАНОВКА СЖИЖЕННИЯ ПРИРОДНОГО ГАЗА 2018
  • Курочкин Андрей Владиславович
RU2688062C1

Иллюстрации к изобретению RU 2 636 966 C1

Реферат патента 2017 года Способ производства сжиженного природного газа

Изобретение относится к газовой промышленности и криогенной технике, конкретно к технологиям сжижения природного газа на газораспределительных станциях. Способ производства сжиженного природного газа включает подачу потока сжатого природного газа из магистрального трубопровода высокого давления со входа газораспределительной станции и разделение потока на продукционный и технологический потоки. Технологический поток расширяют в детандере с совершением внешней работы, подают в основной и предварительный теплообменники и подают его с низким давлением потребителю. Продукционный поток охлаждают за счет нагрева технологического с образованием газожидкостной смеси, дополнительно охлаждают и расширяют в дроссельном вентиле, на выходе из которого отделяют жидкую фазу с помощью сепаратора. Жидкую фазу направляют в хранилище или потребителям сжиженного природного газа. Оставшуюся после отделения часть потока смешивают с основным технологическим потоком и направляют на холодный вход теплообменника. Продукционный поток подвергают очистке и осушке в блоке регенеративных теплообменников за счет кристаллизации CO2 на поверхности их пластинок. После прохождения технологического потока через них осуществляют растворение CO2 и удаляют вместе с потоком газа, подаваемого потребителям в трубопровод низкого давления. Техническим результатом является повышение эффективности процесса производства сжиженного природного газа. 1 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 636 966 C1

Способ производства сжиженного природного газа, включающий подачу потока сжатого природного газа из магистрального трубопровода высокого давления со входа газораспределительной станции (ГРС), разделение потока на продукционный и технологический потоки, расширение технологического потока в детандере с совершением внешней работы, теплообмен в основном и предварительном теплообменниках и подачу его с низким давлением потребителю, при котором продукционный поток охлаждают за счет нагрева технологического с образованием газожидкостной смеси, дополнительно охлаждают и расширяют в дроссельном вентиле, на выходе из которого отделяют жидкую фазу с помощью сепаратора, которую направляют в хранилище или потребителям сжиженного природного газа (СПГ), оставшуюся после отделения часть потока смешивают с основным технологическим потоком и направляют на холодный вход теплообменника, отличающийся тем, что продукционный поток подвергают очистке и осушке в блоке регенеративных теплообменников за счет кристаллизации CO2 на поверхности их пластинок, а после прохождения технологического потока через них осуществляют растворение CO2 и удаляют вместе с потоком газа, подаваемого потребителям в трубопровод низкого давления.

Документы, цитированные в отчете о поиске Патент 2017 года RU2636966C1

СПОСОБ ПРОИЗВОДСТВА СЖИЖЕННОГО ПРИРОДНОГО ГАЗА И КОМПЛЕКС ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Гайдт Давид Давидович
  • Мишин Олег Леонидович
RU2541360C1
СПОСОБ ОЖИЖЕНИЯ ПРИРОДНОГО ГАЗА 2001
  • Борискин В.В.
  • Глазунов В.Д.
  • Машканцев М.А.
  • Пошернев Н.В.
  • Сердюков С.Г.
  • Стрельцов Ю.М.
  • Ходорков И.Л.
RU2202078C2
US 20160138863 A1, 19.05.2016
WO 1999001706 A1, 14.01.1999
US 20160109177 A1, 21.04.2016.

RU 2 636 966 C1

Авторы

Байков Игорь Равильевич

Кулагина Ольга Владимировна

Даты

2017-11-29Публикация

2016-11-14Подача