Изобретение относится к области микросистемной техники, в частности к приборам для измерения величины линейного ускорения.
Известен интегральный датчик ускорения [Патент США №5616844 А], содержащий опорную рамку, инерционную массу и упругие элементы подвеса, изготовленные из единой кремниевой пластины. Емкостной преобразователь служит для измерения перемещений инерционной массы при наличии измеряемого ускорения.
Недостатком данного устройства являются его недостаточные точностные характеристики, обусловленные влиянием токов утечки и паразитных емкостей, присущих емкостным преобразователям перемещений.
Функциональным аналогом заявляемого объекта является интегральный датчик ускорения [Патент США №6105427 А], содержащий инерционную массу, сформированную в опорной рамке вместе с двумя упругими элементами подвеса и элементами их крепления к рамке. Перемещения инерционной массы при наличии ускорения измеряются емкостным преобразователем перемещений.
Недостатком данного устройства являются его недостаточные точностные характеристики, обусловленные влиянием токов утечки и паразитных емкостей, присущих емкостным преобразователям перемещений.
Наиболее близким по технической сущности к заявляемому объекту является интегральный кремниевый тензоакселерометр (далее - интегральный датчик ускорения) [Патент РФ 2072728], содержащий выполненные из единой монокристаллической кремниевой подложки основание (далее - опорная рамка), инерционную массу, соединяющий их концентратор механических напряжений (далее - упругий консольный элемент), на рабочей поверхности которого расположены диффузионные тензорезисторы, соединенные металлизацией в мостовую измерительную схему (далее - тензорезистивные преобразователи деформации), и дополнительный груз, размещенный на инерционной массе. При наличии измеряемого ускорения силы инерции вызывают деформацию изгиба упругого консольного элемента, которая фиксируется тензорезистивными преобразователями информации.
Недостатком данного устройства являются его недостаточная чувствительность, обусловленная тем, что при заданном диапазоне частот измеряемых ускорений и толщине упругого консольного элемента чувствительность интегрального датчика ускорения ограничена низкой чувствительностью тензорезистивных преобразователей деформации на основе диффузионных тензорезисторов. В результате приходится идти на компромисс, так как с повышением чувствительности связана необходимость в уменьшении толщины упругого консольного элемента, что, однако, влечет за собой снижение верхней границы рабочего частотного диапазона и показателя качества интегрального датчика ускорения (произведение чувствительности на квадрат резонансной частоты).
Задача предлагаемого изобретения состоит в повышении чувствительности интегрального датчика ускорений при сохранении рабочего частотного диапазона.
Для решения поставленной задачи интегральный датчик ускорения, содержащий выполненные из полупроводникового материала за одно целое опорную рамку и закрепленную на одном из ее плеч с помощью упругих консольных элементов с тензорезистивными преобразователями деформации инерционную массу, согласно изобретению дополнительно содержит пару упругих торсионных элементов, расположенных на противоположных плечах опорной рамки перпендикулярно упругим консольным элементам и соединенных с инерционной массой, при этом тензорезистивные преобразователи деформации выполнены на основе кремниевых нанонитей, оснащенных измерительными электродами. Кремниевые нанонити могут быть образованы участками локальных утоньшений упругих консольных элементов.
На фиг. 1 представлен общий вид сверху на интегральный датчик ускорения, на фиг. 2 представлен общий вид сзади на интегральный датчик ускорения, на фиг. 3 представлен частный случай исполнения интегрального датчика ускорения, в соответствии с которым, кремниевые нанонити образованы участками локальных утоньшений упругих консольных элементов.
Интегральный датчик ускорения (фиг. 1) содержит опорную рамку 1 и закрепленную на одном из ее плеч с помощью упругих консольных элементов 2 с тензорезистивными преобразователями деформации инерционную массу 3. Кроме того, интегральный датчик ускорения содержит пару упругих торсионных элементов 4 (фиг. 2), расположенных на противоположных плечах опорной рамки 1 перпендикулярно упругим консольным элементам 2 и соединенных с инерционной массой 3. При этом тензорезистивные преобразователи деформации выполнены на основе кремниевых нанонитей 5 (показаны условно), оснащенных измерительными электродами 6. Возможно исполнение предлагаемого интегрального датчика ускорения (фиг. 3), в соответствии с которым кремниевые нанонити 5 образованы участками локальных утоньшений упругих консольных элементов 2.
Интегральный датчик ускорения работает следующим образом. При возникновении ускорения опорной рамки 1 в направлении оси Z, направленной перпендикулярно плоскости опорной рамки, под действием сил инерции происходит угловое перемещение инерционной массы 3 вокруг оси Y (фиг. 1), которое с помощью упругих торсионных элементов 4 преобразуется в продольную деформацию упругих консольных элементов 2, величина которой измеряется тензорезистивными преобразователями деформации, выполненными на основе кремниевых нанонитей 5, оснащенных измерительными электродами 6. Принцип действия последних обусловлен изменением электрического сопротивления чрезвычайно чувствительных к механическим воздействиям кремниевых нанонитей вследствие их деформации (тензорезистивный эффект). Результатом изменения сопротивления кремниевых нанонитей является значительное (по сравнению с тензорезистивными преобразователями деформации на основе диффузионных тензорезисторов) изменение уровня электрического сигнала на измерительных электродах 6, пропорциональное измеряемому ускорению. Таким образом, предлагаемый интегральный датчик ускорения обладает лучшей по сравнению с прототипом чувствительностью к измеряемым ускорениям, что достигается без существенного уменьшения толщины упругих консольных элементов и снижения верхней границы рабочего частотного диапазона.
Технический результат предлагаемого изобретения объясняется следующим. Во-первых, за счет выполнения тензорезистивных преобразователей деформации на основе кремниевых нанонитей, оснащенных измерительными электродами, повышается чувствительность интегрального датчика ускорений, поскольку тензочувствительность кремниевых нанонитей в десятки раз превосходит аналогичный показатель объемного кремния (R. Не, P. Yang, "Giant piezoresistance effect in silicon nanowires", Nature Nanotechnology, vol. 1, pp. 42-46, 2006), в котором формируются диффузионные тензорезисторы. Во вторых, введение дополнительных упругих торсионных элементов позволяет повысить жесткость подвеса инерционной массы, что способствует сохранению рабочего частотного диапазона интегрального датчика ускорения.
Для обеспечения лучшей технологичности конструкции интегрального датчика ускорения кремниевые нанонити могут быть образованы участками локальных утоньшений упругих консольных элементов.
В целом, по сравнению с прототипом, предлагаемое изобретение позволяет повысить чувствительность интегрального датчика ускорения при сохранении рабочего частотного диапазона.
название | год | авторы | номер документа |
---|---|---|---|
МНОГОБАЛОЧНЫЙ АКСЕЛЕРОМЕТР - АНАЛИЗАТОР СПЕКТРА МЕХАНИЧЕСКИХ КОЛЕБАНИЙ НА ОСНОВЕ ТЕНЗОРЕЗИСТИВНЫХ ПРЕОБРАЗОВАТЕЛЕЙ | 2008 |
|
RU2387999C1 |
ИНТЕГРАЛЬНЫЙ ТЕНЗОПРЕОБРАЗОВАТЕЛЬ УСКОРЕНИЯ | 2012 |
|
RU2504866C1 |
ДВУХБАЛОЧНЫЙ АКСЕЛЕРОМЕТР | 2006 |
|
RU2324192C1 |
МУЛЬТИПЛИКАТИВНЫЙ МИКРОЭЛЕКТРОННЫЙ ДАТЧИК ДАВЛЕНИЯ (ВАРИАНТЫ) | 2003 |
|
RU2247342C1 |
ТЕНЗОАКСЕЛЕРОМЕТР | 2008 |
|
RU2382369C1 |
ТЕНЗОРЕЗИСТИВНЫЙ ПРЕОБРАЗОВАТЕЛЬ | 2015 |
|
RU2586259C1 |
Микромеханический акселерометр с низкой чувствительностью к термомеханическим воздействиям | 2020 |
|
RU2746762C1 |
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МИКРОМЕХАНИЧЕСКОГО АКСЕЛЕРОМЕТРА | 2011 |
|
RU2492490C1 |
Твердотельный датчик линейных ускорений | 2020 |
|
RU2746112C1 |
Способ и устройство тензоэлектрического преобразования | 2017 |
|
RU2661456C1 |
Изобретение относится к области микросистемной техники, в частности к приборам для измерения величины линейного ускорения. Интегральный датчик ускорения содержит выполненные из полупроводникового материала за одно целое опорную рамку и закрепленную на одном из ее плеч с помощью упругих консольных элементов с тензорезистивными преобразователями деформации инерционную массу, при этом датчик дополнительно содержит пару упругих торсионных элементов, расположенных на противоположных плечах опорной рамки перпендикулярно упругим консольным элементам и соединенных с инерционной массой, при этом тензорезистивные преобразователи деформации выполнены на основе кремниевых нанонитей, оснащенных измерительными электродами. Технический результат – повышение чувствительности интегрального датчика ускорений при сохранении рабочего частотного диапазона. 1 з.п. ф-лы, 3 ил.
1. Интегральный датчик ускорения, содержащий выполненные из полупроводникового материала за одно целое опорную рамку и закрепленную на одном из ее плеч с помощью упругих консольных элементов с тензорезистивными преобразователями деформации инерционную массу, отличающийся тем, что он дополнительно содержит пару упругих торсионных элементов, расположенных на противоположных плечах опорной рамки перпендикулярно упругим консольным элементам и соединенных с инерционной массой, при этом тензорезистивные преобразователи деформации выполнены на основе кремниевых нанонитей, оснащенных измерительными электродами.
2. Интегральный датчик ускорения по п. 1, отличающийся тем, что кремниевые нанонити образованы участками локальных утоньшений упругих консольных элементов.
CN 102680738 A, 19.09.2012 | |||
ИНТЕГРАЛЬНЫЙ КРЕМНИЕВЫЙ ТЕНЗОАКСЕЛЕРОМЕТР | 1994 |
|
RU2072728C1 |
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП-АКСЕЛЕРОМЕТР НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК | 2011 |
|
RU2455652C1 |
CN 101470131 A, 01.07.2009 | |||
ВИБРАЦИОННЫЙ ГИРОСКОП | 2010 |
|
RU2444703C1 |
Авторы
Даты
2017-12-21—Публикация
2016-07-07—Подача