Способ определения концентрации компонента в двухкомпонентной газовой смеси Российский патент 2017 года по МПК G01N25/18 G01N27/18 G01N30/66 

Описание патента на изобретение RU2639740C1

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности.

Известна система, реализующая способ пожарного мониторинга на объектах энергетики с использованием термомагнитных газоанализаторов кислорода (см. Зыков В.И., Крупин М.В., Левчук М.С. и др. Система пожарного мониторинга на объектах энергетики с использованием термомагнитных газоанализаторов кислорода // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. - 2012. - №3. - С. 64-70). Данная система содержит рабочий (для детектирования контролируемого параметра смеси) и сравнительный (для компенсации погрешностей, вызванных неконтролируемым параметром смеси) элементы, представляющие собой полые спирали. Сравнительный чувствительный элемент размещается в том месте смеси, где нет искусственного магнитного поля, а рабочий чувствительный - там, где есть термомагнитная конвекция смеси (наличие магнитного поля). Чувствительные элементы соединяются по уравновешиваемой мостовой схеме. В рассматриваемом случае из-за термомагнитной конвекции изменяется температура рабочего чувствительного элемента, что в свою очередь приводит к изменению его сопротивления. В результате из-за разбаланса измерительного моста на его выходе возникает сигнал, по величине которого можно судить о концентрации кислорода в анализируемой газовой среде.

Недостатком этой известной системы мониторинга можно считать невысокую точность измерения из-за влияния температуры окружающей среды на вторичную цепь измерения сопротивлений спиралей.

Наиболее близким техническим решением к предлагаемому способу является принятый автором за прототип газоанализатор, реализующий способ определения процентного содержания компонента газовой смеси (см. Информационно-измерительная техника и электроника. Учебник. Под редакцией Г.Г. Раннева. Издательство «Академия», 2007, с. 391), принцип действия которого основан на изменении сопротивления проводника в зависимости от теплопроводности смеси двух газов. В этом способе на основе измерения теплопроводности газовой смеси сопротивлением чувствительного элемента (теплового преобразователя) с учетом известного процентного содержания одного компонента смеси и теплопроводности этого же компонента, можно вычислить процентное содержание второго компонента смеси.

Недостатком данного способа является невысокая точность измерения из-за отсутствия информации об объеме, занимаемом контролируемым компонентом в измерительной камере.

Техническим результатом заявляемого технического решения является повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси.

Технический результат достигается тем, что в способе определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле

m=ρ vксм1см2см12)/λсм2,

где ρ - плотность контролируемого компонента, vк - объем камеры, λсм1 - теплопроводность первого компонента, λсм2 - теплопроводность второго контролируемого компонента, λсм12 - теплопроводность газовой смеси, и затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение объема второго компонента в двухкомпонентной газовой смеси через ее теплопроводность дает возможность определить концентрацию контролируемого компонента в газовой смеси.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения концентрации компонента в двухкомпонентной газовой смеси на основе измерения объема второго компонента через теплопроводность газовой смеси с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ определения концентрации.

Устройство содержит измерительную камеру 1, проволоку 2, термопару 3, усилитель 4, измеритель напряжения 5, блок преобразования 6 и блок ввода 7. Способ работает следующим образом. Наличие в измерительной камере двухкомпонентной газовой смеси и разогретой проволоки обусловливает теплообмен в камере. В рассматриваемом случае теплообмен осуществляется путем теплопроводности самой газовой среды. Как известно при теплообмене в зависимости от теплоотдачи температура проволоки изменяется. В соответствии с этим, если теплопроводность данной газовой смеси будет меняться, то будет меняться температура разогретой проволоки. Следовательно, при изменении теплопроводности газовой смеси по величине изменения температуры проволоки при постоянном значении тока, протекающего через проволоку, можно судить о теплопроводности газовой среды. Для теплопроводности двухкомпонентной газовой смеси, состоящей из двух газов, например, не вступающих в реакцию друг с другом, можно записать

где λсм12, λсм1, λсм2 - соответственно теплопроводности смеси и компонентов; a - и b - процентное содержание компонентов смеси.

Из приведенной выше формулы видно, что если измерить теплопроводность данной двухкомпонентной газовой смеси λсм12, то при известных значениях теплопроводностей компонентов можно вычислить процентное содержание одного (при известном процентном содержании второго компонента) из компонентов газовой смеси. В силу этого формулу (1) можно переписать как

Зная процентное содержание одного компонента в газовой смеси, можно вычислить объем, занимаемый этим компонентом в измерительной камере. Пусть объем измерительной камеры Vк, а объем, занимаемый искомым компонентом в измерительной камере, например кислородом, Vкис. Тогда для процентного содержания кислорода а в измерительной камере с учетом объемов Vк и Vкис можно записать, что

a=(Vкис/Vк)100.

Если значение а из последней формулы подставить в формулу (2), то получим Vкис=Vксм1см2см12)/λсм2.

Из полученной формулы видно, что при известных значениях теплопроводностей компонентов и объема измерительной камеры измерением электропроводности газовой смеси можно вычислить объем искомого компонента в камере.

Согласно предлагаемому способу измерение объема искомого компонента через электропроводность газовой смеси дает возможность далее вычислить массу искомого компонента в газовой смеси. Для этого необходимо знать плотность контролируемого компонента. После этого по известной плотности материала (компонента) и известному объему данного материала можно вычислить массу материала. Следовательно, зная массу одной молекулы материала (из таблиц, например, для кислорода) и общую массу кислорода в объеме Vкис, можно рассчитать концентрацию материала в измерительной камере.

В данном способе определение массы материала через электропроводность газовой смеси можно осуществить измерением температуры разогретой проволоки.

Устройство, реализующий предлагаемый способ, работает следующим образом. Помещенная двухкомпонентная газовая смесь в измерительную камеру 1 посредством проволоки 2 разогревается. При теплообмене за счет электропроводности газовой смеси температура проволоки изменятся (значение тока, прошедшего через проволоку, остается постоянным) в зависимости от изменения электропроводности смеси. Так как электропроводность данной смеси напрямую зависит от концентрации (массы) одного компонента (при постоянной величине концентрации (массы) второго компонента), то измерив температуру проволоки, можно получить информацию об искомом параметре. В рассматриваемом способе для измерения температуры проволоки используется термопара 3. Выходной сигнал термопары (термоЭДС) далее усиливается в усилителе 4 и поступает на вход измерителя напряжения 5. После этого напряжение последнего подается на первый вход блока преобразования 6. Одновременно на второй вход блока преобразования с выхода блока ввода 7 подается сигнал, соответствующий массе одной молекулы, определяется концентрация контролируемого вещества (компонента) в двухкомпонентной газовой смеси.

Таким образом, согласно предлагаемому способу измерение массы одного компонента в двухкомпонентной газовой смеси с дальнейшей поправкой массы одной молекулы контролируемого вещества можно определить концентрацию искомого компонента в двухкомпонентной газовой смеси.

Предлагаемый способ успешно может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности.

Похожие патенты RU2639740C1

название год авторы номер документа
Устройство для определения концентрации кислорода 2016
  • Ахобадзе Гурам Николаевич
RU2613596C1
Устройство для определения содержания воды в потоке нефтепродукта 2019
  • Ахобадзе Гурами Николаевич
RU2706451C1
СПОСОБ ПРЕДОТВРАЩЕНИЯ ВОСПЛАМЕНЕНИЯ И ВЗРЫВА МЕТАНОВОЗДУШНЫХ СМЕСЕЙ 2006
  • Азатян Вилен Вагаршевич
  • Вавилов Андрей Александрович
  • Тимербулатов Тимур Рафкатович
  • Школдыченко Виктор Захарович
RU2329777C2
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР 2014
  • Сердюк Илья Владимирович
  • Соколов Александр Евгеньевич
RU2583166C1
ГАЗОВЫЙ СОСТАВ ДЛЯ ПРЕДОТВРАЩЕНИЯ ВОСПЛАМЕНЕНИЯ И ВЗРЫВА МЕТАНОВОЗДУШНЫХ СМЕСЕЙ 2010
  • Азатян Вилен Вагаршевич
  • Баймуратова Гульназ Рафиковна
  • Вавилов Станислав Владимирович
  • Копылов Николай Петрович
  • Тимербулатов Тимур Рафкатович
  • Шебеко Юрий Николаевич
RU2444391C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ КОМПОНЕНТА ГАЗОВОЙ СРЕДЫ 2017
  • Марков Александр Владимирович
RU2665792C1
ДИФФЕРЕНЦИАЛЬНЫЙ МАССИВНЫЙ КАЛОРИМЕТР И СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОТЫ АДСОРБЦИИ И ХИМИЧЕСКИХ РЕАКЦИЙ ГАЗОВ 2010
  • Чесноков Владимир Владимирович
  • Чесноков Дмитрий Владимирович
RU2454641C1
СПОСОБ ЭКСПРЕСС-ОПРЕДЕЛЕНИЯ СОСТАВА ДВУХКОМПОНЕНТНОЙ СРЕДЫ 2001
  • Ахметшин Р.М.
  • Ощепков Н.М.
  • Искаков К.М.
  • Ханнанов Р.К.
  • Саитов Ш.Ф.
RU2188410C1
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР 2014
  • Сердюк Илья Владимирович
RU2557435C1
СПОСОБ ТЕРМОМАГНИТНОЙ СЕПАРАЦИИ ВОЗДУХА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Белозеров Валерий Владимирович
  • Босый Сергей Иванович
  • Новакович Александр Александрович
  • Толмачев Геннадий Николаевич
  • Видецких Юрий Аркадьевич
  • Пирогов Михаил Георгиевич
RU2428242C2

Иллюстрации к изобретению RU 2 639 740 C1

Реферат патента 2017 года Способ определения концентрации компонента в двухкомпонентной газовой смеси

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле

m=ρ vксм1см2см12)/λсм2,

где ρ - плотность контролируемого компонента, vк - объем камеры, λсм1 - теплопроводность первого компонента, λсм2 - теплопроводность второго контролируемого компонента, λсм12 - теплопроводность газовой смеси. Затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра. Технический результат - повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси. 1 ил.

Формула изобретения RU 2 639 740 C1

Способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, отличающийся тем, что сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле

m=ρVк(λсм1см2см12)/λсм2,

где ρ - плотность контролируемого компонента, vк - объем камеры, λсм1 - теплопроводность первого компонента, λсм2 - теплопроводность второго контролируемого компонента, λсм12 - теплопроводность газовой смеси, и затем с учетом массы одной молекулы контролируемого второго компонента определяют концентрацию искомого параметра.

Документы, цитированные в отчете о поиске Патент 2017 года RU2639740C1

0
SU274482A1
СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМНОЙ ДОЛИ ОКСИДА АЗОТА (I) В ГАЗОВЫХ СМЕСЯХ 2003
  • Колесников В.П.
  • Пешкова Л.В.
RU2255333C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ГАЗА 0
  • В. С. Лемперт, В. Ф. Луценко, В. Т. Маликов, А. В. Плескаченко В. С. Фомин
  • Завод Киевприбор
SU210466A1
ТЕРМОКОНДУКТОМЕТРИЧЕСКИЙ АНАЛИЗАТОР КОНЦЕНТРАЦИИ КОМПОНЕНТОВ ГАЗОВОЙ СМЕСИ 2014
  • Коровин Владимир Андреевич
  • Коровин Константин Владимирович
RU2568934C1
Способ анализа газовоздушной смеси при каротажных работах 1988
  • Розанов Герман Романович
SU1670557A1
US 20120073357 A1, 29.03.2012
WO 2001027604 A1, 19.04.2001.

RU 2 639 740 C1

Авторы

Ахобадзе Гурам Николаевич

Даты

2017-12-22Публикация

2017-02-17Подача