Область техники
Изобретение относится к электровакуумной технике, в частности к изготовлению полупрозрачных серебряно-кислородно-цезиевых фотокатодов в случаях, где конструктивно нежелательно проведение высокочастотного разряда для окисления слоя серебра, а также в целях предотвращения окисления деталей внутренней арматуры.
Уровень техники
Современный уровень постановки экспериментов по программам лазерного термоядерного синтеза на установках нового поколения выдвигает повышенные требования к методам диагностики лазерного излучения с длиной волны 1,06 мкм и плазмы, в том числе и к фотохронографической регистрации при помощи время анализирующих электронно-оптических преобразователей (ЭОП). Единственным фотокатодом ЭОП, имеющим чувствительность на данной длине волны до 500 мкА/Вт, в настоящее время является серебряно-кислородно-цезиевый (Ag-O-Cs) фотокатод, поскольку фотокатоды с отрицательным электронным сродством, имеющие более высокую чувствительность, в данных приборах еще не нашли применения из-за сложности и дороговизны оборудования и технологического процесса.
Известен способ изготовления прибора с серебряно-кислородно-цезиевым фотокатодом [авт. св. СССР №1780445, МПК6 H01J 9/12, 27.09.1995], в котором после процедуры формирования фотокатода в приборе осуществляют подпыление дополнительного слоя серебра на фотокатод и прогрев прибора до получения максимального значения фототока фотокатода, согласно изобретению, с целью увеличения световой чувствительности фотокатодов, прогрев прибора проводят при температуре 160°С, причем подпыление серебра и прогрев прибора проводят не ранее чем через 24 ч после изготовления прибора и повторяют эти операции с тем же интервалом времени до прекращения роста фототока фотокатода.
Недостатками данного технического решения являются невысокая чувствительность фотокатода в диапазоне длин волн от 1,0 до 1,06 мкм и большая длительность технологического процесса.
Наиболее близким техническим решением к заявленному является способ изготовления серебряно-кислородно-цезиевого фотокатода [А. Соммер. Фотоэмиссионные материалы. - М.: Энергия, 1973. - С.92-100], принятый за прототип и включающий три основных этапа процесса: напыление основного слоя серебра, окисление слоя серебра в высокочастотном разряде кислорода, обработка окиси серебра цезием. Дополнительными процессами могут быть нанесение тонкой серебряной пленки после окисления основного слоя серебра до или после обработки окисла цезием, его прогрев, а также поверхностное окисление фотокатода кислородом (сенсибилизация).
Недостатком прототипа является малая спектральная чувствительность серебряно-кислородно-цезиевого фотокатода в инфракрасной области спектра.
При окислении слоя серебра с помощью высокочастотного разряда кислородом происходит неравномерное по глубине окисление слоя серебра, в результате чего возникают локальные неоднородности в структуре фотокатода, что отрицательно влияет на конечную чувствительность. Одновременно происходит нежелательное окисление внутренних металлических деталей катодной камеры прибора. Присутствие этих двух факторов в принятой во всех странах технологии формирования фотокатода не позволяет получить требуемую высокую спектральную чувствительность на длинах волн в диапазоне от 1,0 до 1,06 мкм.
Техническим результатом предлагаемого технического решения является повышение спектральной чувствительности серебряно-кислородно-цезиевого фотокатода в инфракрасной области спектра.
Чувствительность фотокатода повышается за счет разработки способа формирования серебряно-кислородно-цезиевого фотокатода в отсутствии процедуры окисления основного слоя серебра высокочастотным разрядом в атмосфере кислорода.
Технический результат достигается тем, что в способе изготовления серебряно-кислородно-цезиевого фотокатода, включающем прогрев и обезгаживание подложки фотокатода при температуре до 400°C не менее 10 ч, охлаждение подложки фотокатода до нормальных климатических условий (НКУ), напыление основного слоя серебра прозрачностью менее 50% на подложку катода, повторное напыление слоя серебра на подложку катода с фоточувствительным слоем, прогрев серебра с фоточувствительным слоем и сенсибилизацию кислородом, основной слой серебра обрабатывают цезием при рабочей температуре от 120°C до 160°C, производят охлаждение полученного слоя до НКУ и активируют его многократной поочередной подачей цезия и кислорода до получения максимальной чувствительности, затем при НКУ производят повторное напыление серебра на ранее сформированный фоточувствительный слой до падения фототока на 60-90%, производят прогрев от 120°C до 160°C напыленного слоя серебра и активируют этот слой многократно и поочередно цезием и кислородом, процедуру повторного напыления серебра, прогрева напыленного слоя серебра, активировку слоя серебра цезием и кислородом повторяют два и более раз до достижения максимального значения фототока фотокатода.
В разработанном способе изготовления серебряно-кислородно-цезиевого фотокатода на подложку при комнатной температуре наносят первоначальный слой серебра прозрачностью менее 50%. Затем поднимают температуру до 120-160°C и производят многократную подачу цезия до получения максимальной чувствительности. После этого фотокатод охлаждают до комнатной температуры и производят активировку полученного слоя многократным чередованием цезия и кислорода до максимальной чувствительности.
Затем производят напыление второго слоя серебра до падения фототока на 60-90%. После чего поднимают температуру в интервале от 120 до 160°C и активируют фотоэмиссионный слой поочередной подачей цезия и кислорода до максимальной чувствительности (цикл Ag-Cs-O). Для повышения спектральной чувствительности на длине волны 1,06 мкм проводят несколько дополнительных циклов Ag-Cs-O до получения максимальной чувствительности.
Таким образом, достигается заявленный технический результат, а именно повышение спектральной чувствительности серебряно-кислородно-цезиевого фотокатода в инфракрасной области спектра.
Краткое описание чертежей
На фиг. 1 представлена спектральная характеристика серебряно-кислородно-цезиевого фотокатода (зависимость чувствительности фотокатода от длины волны падающего излучения), изготовленного предлагаемым способом и способом, принятым за прототип.
Нижняя кривая на графике относится к прототипу, а верхняя - к разработанному фотокатоду.
Фотокатод, изготовленный предлагаемым способом, имеет чувствительность на длине волны (λ) 1,06 мм в три раза выше, чем изготовленный в прототипе. Разработанный фотокатод также позволяет регистрировать излучение второй (λ=0,53 мкм) и третьей (λ=0,35 мкм) гармоник неодимового лазера, поскольку его чувствительность в три-четыре раза превышает чувствительность прототипа на данных длинах волн.
На фиг. 2 представлена схема процесса изготовления разработанного фотокатода, где:
1 - прогрев и обезгаживание подложки фотокатода, как правило, проводится при температуре до 400°С не менее 10 ч: известная практика такова, что при изготовлении такого фотокатода следует выдерживать температуру от 380°С до 400°С не менее 10 ч;
2 - охлаждение подложки фотокатода до комнатной температуры - от 15 до 35°С; согласно ГОСТ 28198-89 дается определение, что это нормальные климатические условия (НКУ);
3 - напыление основного слоя серебра на подложку проводится при комнатной температуре до потери прозрачности слоя серебра более 50%;
4 - прогрев слоя серебра до рабочей температуры (от 120°С до 160°С);
5 - обработка цезием основного слоя серебра проводится подачей цезия порциями до максимального роста фототока;
6 - охлаждение полученного слоя до комнатной температуры;
7 - активировка полученного слоя многократной подачей цезия и кислорода в объем со слоем серебра проводится при комнатной температуре неоднократно до получения максимальной чувствительности;
8 - повторное напыление серебра на ранее сформированный на подложке фоточувствительный слой проводится при комнатной температуре до падения фототока на 60-90 %;
9 - прогрев слоя серебра поверх сформированного фоточувствительного слоя до рабочей температуры от 120°С до 160°С;
10 - активировка многократно и поочередно цезием и кислородом слоя серебра поверх фоточувствительного слоя проводится при рабочей температуре неоднократно до получения максимальной чувствительности.
Цикл операций 8, 9, 10 (процедуру «серебро-цезий-кислород») проводят два и более раз до достижения максимального значения фототока фотокатода;
11 - герметизация прибора или отпай прибора с откачного поста проводят после достижения максимального значения фототока фотокатода, т.е. получения готового фотокатода.
Осуществление изобретения
Изготовление фотокатода производится в вакуумном объеме при давлении менее (1,1-1,5)⋅10-6 Па. На стеклянную подложку, предварительно прогретую при температуре 400°С в течение 10 ч и охлажденную до комнатной температуры, наносится основной слой серебра до 50% потери прозрачности. Далее основной слой серебра прогревается при температуре 120-160°С, после чего проводится напуск цезия порциями до максимального роста фототока. После этого основной слой серебра, обработанный цезием, охлаждается до комнатной температуры и производится поочередный напуск цезия и кислорода до максимального значения фототока. Подачу цезия и кислорода производят поочередно и многократно (более двух раз) до получения максимальной чувствительности.
Затем производят напыление второго слоя серебра при комнатной температуре до падения фототока на 60-90 % при облучении фотокатода видимым светом.
После этого второй слой серебра прогревается при температуре 120-160°С и проводится поочередная подача цезия и кислорода до максимального роста фототока.
В разработанном способе подача цезия и кислорода может проводиться однократно, но все же для получения максимальной чувствительности подачу цезия и кислорода следует производить многократно (более двух раз). При этом спектральная чувствительность фотокатода на длине волны 1,06 мкм имеет значение 1000-1500 мкА/Вт. Для увеличения чувствительности на длине волны 1,06 мкм проводят дополнительно циклы «серебро-цезий-кислород» аналогично вышеописанному. Спектральная характеристика разработанного фотокатода имеет вид, приведенный на фиг. 1.
Таким образом, разработан способ изготовления серебряно-кислородно-цезиевого фотокатода с повышенной по сравнению с прототипом чувствительностью на длине волны 1,06 мкм без применения высокочастотного разряда в атмосфере кислорода, т.е. исключена процедура окисления основного слоя серебра высокочастотным разрядом в атмосфере кислорода.
Алгоритм предлагаемого способа изготовления серебряно-кислородно-цезиевого фотокатода можно представить следующей формулой:
где n, m, k - количество циклов до максимума фототока.
Таким образом, достигается заявленный технический результат, а именно повышение спектральной чувствительности серебряно-кислородно-цезиевого фотокатода в инфракрасной области спектра.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРОННОГО ПРИБОРА | 1991 |
|
SU1780445A1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МАССИВНОГО ФОТОКАТОДА | 1972 |
|
SU434515A1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОЩЕЛОЧНОГО ФОТОКАТОДА | 2009 |
|
RU2424597C2 |
Способ изготовления спектрозонального фотокатода | 1978 |
|
SU741071A1 |
Способ изготовления полупрозрач-НОгО КиСлОРОдНО-СЕРЕбРяНО-цЕзиЕ-ВОгО фОТОКАТОдА | 1978 |
|
SU803045A1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СПЕКТРОМЕТРИЧЕСКОГО ФОТОЭЛЕКТРОННОГО УМНОЖИТЕЛЯ | 1991 |
|
RU2056667C1 |
Способ изготовления сурьмянощелочного фотокатода | 1975 |
|
SU537410A1 |
Способ изготовления фотокатода на основе арсенида галлия | 1975 |
|
SU537408A1 |
Способ изготовления многощелочного фотокатода | 1964 |
|
SU476620A1 |
ФОТОКАТОД | 2013 |
|
RU2542334C2 |
Изобретение относится к электровакуумной технике, в частности к изготовлению полупрозрачных серебряно-кислородно-цезиевых фотокатодов в случаях, где конструктивно нежелательно проведение высокочастотного разряда для окисления основного слоя серебра, а также в целях предотвращения окисления деталей внутренней арматуры. Способ изготовления фотокатода включает прогрев и обезгаживание подложки, охлаждение подложки фотокатода до нормальных климатических условий (НКУ), напыление основного слоя серебра, повторное напыление слоя серебра на подложку катода с фоточувствительным слоем, прогрев серебра с фоточувствительным слоем и сенсибилизацию кислородом, основной слой серебра обрабатывают цезием при рабочей температуре от 120°C до 160°C, производят охлаждение полученного слоя до НКУ и активируют его многократной поочередной подачей цезия и кислорода, затем при НКУ производят повторное напыление серебра на ранее сформированный фоточувствительный слой до падения фототока на 60-90 %, производят прогрев от 120°C до 160°C напыленного слоя серебра и активируют этот слой многократно и поочередно цезием и кислородом. Изобретение позволяет повысить спектральную чувствительность серебряно-кислородно-цезиевого фотокатода в инфракрасной области спектра. 2 ил.
Способ изготовления серебряно-кислородно-цезиевого фотокатода, включающий прогрев и обезгаживание подложки фотокатода при температуре до 400°С не менее 10 ч, охлаждение подложки фотокатода до нормальных климатических условий, напыление основного слоя серебра прозрачностью менее 50% на подложку катода, повторное напыление слоя серебра на подложку катода с фоточувствительным слоем, прогрев серебра с фоточувствительным слоем и сенсибилизацию кислородом, отличающийся тем, что основной слой серебра обрабатывают цезием при рабочей температуре от 120°С до 160°С, производят охлаждение полученного слоя до нормальных климатических условий и активируют его многократной поочередной подачей цезия и кислорода до получения максимальной чувствительности, затем при нормальных климатических условиях производят повторное напыление серебра на ранее сформированный фоточувствительный слой до падения фототока на 60-90%, производят прогрев от 120°С до 160°С напыленного слоя серебра и активируют этот слой многократно и поочередно цезием и кислородом, процедуру повторного напыления серебра, прогрева напыленного слоя серебра, активировку слоя серебра цезием и кислородом повторяют два и более раз до достижения максимального значения фототока фотокатода.
А | |||
СОММЕР | |||
ФОТО-ЭМИССИОННЫЕ МАТЕРИАЛЫ | |||
М.: ЭНЕРГИЯ, 1973, с.92-100 | |||
VERMA & VARMA ROLE OF ADDITIONAL SILVER IN AG-O-CS PHOTOCATHODE, 1973 | |||
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРОННОГО ПРИБОРА | 1991 |
|
SU1780445A1 |
0 |
|
SU160237A1 | |
CN 105047505 A, 11.11.2015. |
Авторы
Даты
2018-01-09—Публикация
2016-12-30—Подача