Изобретение относится к химико-фармацевтической промышленности и медицине и касается способа получения новой формы биофлавоноида дигидрокверцетина (ДКВ) в виде микротрубок.
ДКВ - 2,3-дигидро-3,5,7-тригидрокси-2-(3,4-дигидроксифенил)-4Н-1-бензопиранон-4 - в литературе известен как таксифолин. Это соединение является природным антиоксидантом и характеризуется широким спектром фармакологической активности (капилляропротекторной, противовоспалительной, гиполипидемической, радиопротекторной, гепатопротекторной). ДКВ, как активный фармацевтический ингредиент, входит в состав фитопрепарата «Диквертин» [Плотников М.Б. и др. Лекарственные препараты на основе диквертина. - Томский университет, 2005, 224 с.]. ДКВ имеет стабильную сырьевую базу в виде древесины лиственницы и производится в промышленном масштабе.
В последнее время большое внимание уделяется получению субстанций, упорядоченных на микроуровне. Особенно интересными представителями в этом аспекте являются микротрубки.
Известен способ получения нанодисперсии ДКВ путем микронизации смеси ДКВ с поливинилпирролидоном при помощи лиофильной сушки [Shikov A.N. et al. Nanodispersions of taxifolin: Impact of solid-state properties on dissolution behavior. - Int. J. Pharm., 2009, p. 148-152]. Однако продукт, полученный этим способом, представляет дисперсию наночастиц и не обладает очевидными преимуществами трубчатой структуры.
Известен также способ получения фибриллы таксифолина, осуществляемый следующим образом: 1 г таксифолина растворяют в 1 мл диметилсульфоксида (ДМСО) и образовавшуюся густую сиропообразную жидкость при быстром перемешивании (1000 об/мин) добавляют в кювету с дистиллированной водой. При достижении концентрации таксифолина 2-5 мг/мл, весь объем жидкости заполняется белой массой [Тараховский Ю.С. и др. Фибриллы таксифолина как основа наноизделий для биомедицины. - ДАН, 2008, том 422, №2, с. 262-264].
Недостатком данного способа является отсутствие возможности выделения продукта из маточного раствора в твердом агрегатном состоянии по причине его нестабильности. При попытке выделения из суспензии фибриллы деградируют на воздухе в течение одной минуты. Данное обстоятельство не только затрудняет проведение полного комплекса анализов в соответствии с нормами регулирования фармацевтической отрасли, но и делает практически невозможным внедрение полученных таким способом фибрилл ДКВ в химико-фармацевтическую промышленность.
Проблемой, решаемой данным изобретением, является получение микроструктурированных трубчатых форм ДКВ, выделяемых из маточного раствора в твердом агрегатном состоянии и стабильных при хранении на воздухе.
Техническим результатом изобретения является получение трубчатых форм ДКВ с характерными капиллярными и сорбционными свойствами, а также более высокой растворимостью в воде при комнатной температуре по сравнению с исходной субстанцией ДКВ.
Проблема решается следующим способом получения микротрубок ДКВ, включающим использование органического растворителя и воды, отличающимся тем, что ДКВ смешивают с мочевиной в соотношении 70:30 (мас.%), смесь растворяют в спирте этиловом в соотношении 20:80 (мас.%), в раствор добавляют по каплям воду дистиллированную до значения рН 7, маточный раствор выдерживают при температуре +5 - +35°C в течение 36 ч, полученный продукт отфильтровывают и высушивают на воздухе.
Образовавшиеся микротрубки являются полиморфной формой ДКВ и не содержат примесей мочевины, что было доказано методом ЯМР 1Н спектроскопии и демонстрируется на спектрах, снятых диметилсульфоксиде: исходной субстанции ДКВ (фиг. 1а), ко-кристаллизатора мочевины (фиг. 1б) и полученных микротрубок ДКВ (фиг. 1в).
Трубчатая форма была доказана методом оптической микроскопии посредством визуализации морфологической структуры микротрубок, полученных при температуре 25°C - увеличение в 400 раз (фиг. 2а), и микротрубок, полученных при температуре +5°C - увеличение в 800 раз (фиг. 2б).
Капиллярные и сорбционные свойства были доказаны в экспериментах с парами иода: пустая микротрубка ДКВ (фиг. 3а) и микротрубки ДКВ, заполненные парами сублимированного иода, поглощенного ими в эксикаторе с кристаллическим иодом (фиг. 3б).
Сорбционная способность микротрубок превышает таковую у распространенного коммерческого продукта - силикагеля (табл. 1).
Доказана более высокая растворимость в воде при комнатной температуре микротрубок ДКВ по сравнению с исходной субстанцией (табл. 2).
Способ осуществляют следующим образом:
1. 0,608 г ДКВ смешивают с 0,261 г мочевины (70:30 мас.%), растворяют в 3,476 г этилового спирта денатурированного (20:80 мас.%), в полученный раствор добавляют по каплям 15,0 г воды дистиллированной (до рН 7) при интенсивном перемешивании на магнитной мешалке MR Hei-Standart (Heidolph Instruments GmbH, Германия), водно-спиртовой раствор выдерживают при температуре +25°C в течение 36 часов, полученный продукт отфильтровывают в вакууме, осадок высушивают. Выход продукта составляет 0,408 г.
2. 1,220 г ДКВ смешивают с 0,523 г мочевины (70:30 мас.%), растворяют в 6,971 г этилового спирта денатурированного, в полученный раствор добавляют по каплям 30,0 г воды дистиллированной (до рН 7) при интенсивном перемешивании на магнитной мешалке MR Hei-Standart (Heidolph Instruments GmbH, Германия), водно-спиртовой раствор выдерживают при температуре +35°C в течение 36 часов, полученный продукт отфильтровывают в вакууме, осадок высушивают. Выход продукта составляет 0,843 г.
3. 0,150 г ДКВ смешивают с 0,064 г мочевины (70:30 мас.%), растворяют в 0,856 г этилового спирта денатурированного (20:80 мас.%), в полученный раствор добавляют по каплям 3,5 г воды дистиллированной (до рН 7) при интенсивном перемешивании на магнитной мешалке MR Hei-Standart (Heidolph Instruments GmbH, Германия), водно-спиртовой раствор выдерживают при температуре +5°C в течение 36 часов, полученный продукт отфильтровывают в вакууме, осадок высушивают. Выход продукта составляет 0,100 г.
Условия получения микротрубок в предлагаемом способе были установлены экспериментально и явным образом не вытекают из уровня техники и не очевидны для специалиста. Способ получения трубчатых форм ДКВ во взаимосвязи с их стабильностью оптимизировали по следующим параметрам: соотношение ДКВ:мочевина (табл. 3), температурный режим (табл. 4) и время выдерживания маточного раствора (фиг. 4).
Оптимальный температурный режим для образования трубчатых структур ДКВ выявлен в диапазоне от +5 до +35°C, при этом установлена зависимость размеров трубок ДКВ от температуры при которой выдерживают маточный раствор (табл. 4, фиг. 2). Это обстоятельство позволяет целенаправленно получать продукт с контролируемыми параметрами.
Оптимальное время установлено по кривой зависимости массы выпавшего осадка микротрубок от времени выдерживания маточного раствора (соотношение ДКВ:мочевина 70:30 мас.%, температура 25°C), которая выходит на плато через 36 ч.
Способ получения микроструктурированных трубчатых форм ДКВ, стабильных при хранении в твердом агрегатном состоянии, может найти широкое применение в химико-фармацевтической промышленности и использоваться при создании лекарственных препаратов, в том числе и с адресной доставкой, а также при производстве молекулярных сепараторов, биосенсоров и материала поддержки в тканевой инженерии.
Как видно из таблицы 5, предложенная технология успешно масштабируется.
Способ по изобретению позволяет выделить из матачного раствора стабильные при хранении на воздухе микроструктурированные трубчатые формы ДКВ в твердом агрегатном состоянии.
С помощью предложенного способа достигается получение трубчатых форм ДКВ с характерными капиллярными и сорбционными свойствами, а также более высокой растворимостью в воде при комнатной температуре по сравнению с исходной субстанцией ДКВ.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ МИКРОТРУБОК ИЗ ХИТОЗАНА (ВАРИАНТЫ) | 2014 |
|
RU2564921C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНОГО ВЕЩЕСТВА (ВАРИАНТЫ) | 2018 |
|
RU2687156C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ КОРЫ БЕРЕЗЫ | 2016 |
|
RU2618892C1 |
СПОСОБ ВЫДЕЛЕНИЯ ДИГИДРОКВЕРЦЕТИНА | 1997 |
|
RU2114631C1 |
СПОСОБ ВЫДЕЛЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ИЗОМЕРОВ ДИГИДРОКВЕРЦЕТИНА | 2006 |
|
RU2308267C1 |
СПОСОБ ВЫДЕЛЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ИЗОМЕРОВ ДИГИДРОКВЕРЦЕТИНА | 2006 |
|
RU2317093C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ - АЗОТСОДЕРЖАЩИХ БЕТАИНОВ ГИДРОХЛОРИДОВ - НА ОСНОВЕ ПОСЛЕСПИРТОВОЙ КУКУРУЗНОЙ БАРДЫ | 2019 |
|
RU2736186C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИГИДРОКВЕРЦЕТИНА | 2011 |
|
RU2454410C1 |
СПОСОБ ПОЛУЧЕНИЯ ЯИЧНОГО ЛЕЦИТИНА ИЗ ЛИПИДНО-ПРОТЕИНОВОГО ЖЕЛТОЧНОГО ОСТАТКА | 2022 |
|
RU2796948C1 |
СУПРАМОЛЕКУЛЯРНЫЙ КОМПЛЕКС, ОБЛАДАЮЩИЙ ПРОТИВОВОСПАЛИТЕЛЬНОЙ И АНГИОПРОТЕКТОРНОЙ АКТИВНОСТЬЮ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2013 |
|
RU2533231C1 |
Изобретение относится к химико-фармацевтической промышленности и медицине и касается способа получения новой формы биофлавоноида дигидрокверцетина (ДКВ) в виде микротрубок, отличающийся тем, что ДКВ смешивают с мочевиной в соотношении 70:30 (мас.%), смесь растворяют в спирте этиловом в соотношении 20:80 мас.%, в раствор добавляют по каплям воду дистиллированную до значения рН 7, маточный раствор выдерживают при температуре (+5)-(+35)°C в течение 36 ч, полученный продукт отфильтровывают и высушивают на воздухе. Техническим результатом изобретения является получение трубчатых форм ДКВ, способных сохранять микроупорядоченную структуру на открытом воздухе. Образовавшиеся микротрубки являются полиморфной формой ДКВ и не содержат примесей мочевины. Продукт имеет трубчатую структуру и проявляет капиллярные свойства, а также обладают высокой сорбционной способностью, сравнимой или превышающей распространенные коммерческие аналоги, и растворимость микротрубок ДКВ на порядок выше растворимости исходной субстанции. 4 ил., 5 табл.
Способ получения микротрубок дигидрокверцетина (ДКВ), включающий использование органического растворителя и воды, отличающийся тем, что ДКВ смешивают с мочевиной в соотношении 70:30 мас.%, смесь растворяют в спирте этиловом в соотношении 20:80 мас.%, в раствор добавляют по каплям воду дистиллированную до значения рН 7, маточный раствор выдерживают при температуре (+5)–(+35)°С в течение 36 ч, полученный продукт отфильтровывают и высушивают на воздухе.
Тараховский Ю.С | |||
и др., "Фабриллы таксифолина как основа наноизделий для бтомедицины", ДАН,2008, т.422, no.2,с | |||
Телефонно-трансляционное устройство | 1921 |
|
SU252A1 |
Shikov A.N | |||
et al, "Nanodispersions of taxifolin: Impact of solid-state properties on dissolution behavior",Int.J Pharmaceutics, 2009, v.377, p.148-152. |
Авторы
Даты
2018-01-09—Публикация
2017-07-03—Подача