СПОСОБ ОБРАБОТКИ СЖИЖЕННЫХ ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ 2-АМИНО-2-(ГИДРОКСИМЕТИЛ)ПРОПАН-1,3-ДИОЛОВЫХ СОЕДИНЕНИЙ Российский патент 2018 года по МПК C10G21/20 B01D11/00 B01D3/40 C07C7/10 C10L3/10 C10L3/12 

Описание патента на изобретение RU2643358C2

Область техники, к которой относится изобретение

Настоящее изобретение относится, в общем, к способам обработки сжиженных углеводородов. Более конкретно, настоящее изобретение относится к способам удаления кислых газов из потоков сжиженных газообразных углеводородов с использованием 2-амино-2-(гидроксиметил)пропан-1,3-диоловых соединений.

Уровень техники, к которой относится изобретение

Сжиженные углеводороды, такие как сжиженный природный газ (NGL) или сжиженный нефтяной газ (LPG), представляют собой воспламеняющиеся смеси газообразных углеводородов, используемые в качестве топлива в нагревательных устройствах и двигателях. Они также все больше используются в качестве газов для распыления аэрозолей и хладагентов, заменяя хлорфторуглероды в целях уменьшения разрушения озонового слоя.

Сжиженные углеводороды изготавливают, перерабатывая нефть или "влажный" природный газ, и почти полностью производят из источников ископаемого топлива, причем они получаются в процессе переработки нефти (сырой нефти) или извлекаются из потоков нефти или природного газа, добываемых из подземных месторождений.

Сжиженные газообразные углеводороды могут быстро испаряться при нормальных температурах и давлениях, и их обычно поставляют в стальных газовых баллонах под давлением. Эти баллоны, как правило, наполнены до уровня от 80% до 85% своей емкости, чтобы обеспечивать тепловое расширение содержащейся в них жидкости. Соотношение между объемами испарившегося газа и сжиженного газа изменяется в зависимости от состава, давления и температуры, но составляет, как правило, приблизительно 250:1.

Сжиженные газообразные углеводороды часто содержат разнообразные кислые газообразные примеси, такие как сероводород, различные меркаптаны и другие разнообразные соединения серы, диоксид углерода и сероксид углерода (COS). В газоперерабатывающей промышленности хорошо известно, что такие примеси можно успешно удалять посредством контакта потоков газообразных или жидких углеводородов с водными растворами, содержащими один или несколько аминов. Водные растворы аминов могут быть селективными или неселективными в своей способности абсорбировать определенные кислые газы.

После такой абсорбции кислые соединения отделяются от аминов, и амины возвращаются в систему, за исключением аминосоединений, которые могут быть потеряны в данном процессе. Согласно теории, многие различные амины могли бы найти применение в некоторой степени для удаления кислых газов. Что касается практики, амины, которые действительно находят промышленное применение, представляют собой моноэтаноламин (МЕА), диэтаноламин (DEA), метилдиэтаноламин (MDEA) и диизопропаноламин (DIPA). Например, описано использование смесей MDEA/DIPA (патент США №4808765) для цели удаления H2S.

Обработка сжиженных газообразных углеводородов представляет собой определенные проблемы в том, что амины, как правило, растворяются в значительной степени в этих газах, приводя к соответствующим экономическим убыткам вследствие необходимости пополнения потерь амина (аминов). Многие газоперерабатывающие заводы используют водные растворы DIPA или MDEA для удаления кислых примесей из сжиженных газообразных углеводородов. Однако концентрация этих аминов, как правило, ограничивается приблизительным интервалом от 20 до 35 масс. % в водном потоке, в котором они поступают в технологический процесс. Работа при повышенных концентрациях, которые являются желательными по соображениям производительности, как правило, приводит к нежелательно высокому уровню загрязнения сжиженных газообразных углеводородов амином (аминами).

Эта проблема оказывается особенно острой на газоперерабатывающих заводах, которые перерабатывают LPG, полученный в результате крекинга (т.е. имеющий высокую степень ненасыщенности). Часто степень потери MDEA является достаточной, чтобы сделать экономически невыгодной замену метилдиэтаноламина диэтаноламином.

Каждый из патентов США №№5326385, 5877386 и 6344949 описывают так называемое "обессеривание" сжиженных газообразных углеводородов в ходе разнообразных процессов. Кроме того, согласно патенту США №4959086, используются изомеры аминосоединений для удаления сероводорода из природного газа. Описано использование смесей MDEA/DIPA (патент США №4808765) для цели удаления H2S.

Эти публикации представляют обоснованные решения проблем, которые возникают, когда "обессеривание" сжиженных газообразных углеводородов осуществляется путем обработки аминами кислых газов. Однако было бы предпочтительно наличие аминной композиции, которая позволяет в максимальной степени повысить эффективную концентрацию амина, циркулирующего в системе сжиженных газообразных углеводородов и при этом сокращает до минимума потери амина (аминов) вследствие растворимости в сжиженных газообразных углеводородах.

Сущность изобретения

В соответствии с одним аспектом настоящего изобретения, предлагается способ обработки сжиженных углеводородов, содержащих кислые газы, для удаления кислых газов при одновременном сокращении до минимума потери аминосоединений. Данный способ включает стадию контакта сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, причем первое аминосоединение имеет структуру:

,

в которой каждый из радикалов R1 и R2 может индивидуально представлять собой атом водорода, метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, 2-гидроксиэтил или пропан-2,3-диол.

Когда водные растворы, содержащие традиционные алканоламины, такие как метилдиэтаноламин (MDEA), используются для обработки сжиженного нефтяного газа в процессе контакта двух жидких фаз, с течением времени могут происходить значительные потери аминов. Было доказано, что присутствие гидроксильных групп имеет решающее значение для уменьшения этих потерь посредством усиления липофобной природы молекулы. Таким образом, триэтаноламин (TEA), в молекуле которого содержатся три гидроксильные группы, остается пригодным для выбора, даже несмотря на то что водный раствор MDEA оказывается превосходящим водные растворы TEA в отношении эксплуатационных характеристик и способности удаления кислых газов. Различие качества и способности между MDEA и TEA определяется, главным образом, различной силой оснований, отражающей различные значения pKa, составляющие, соответственно, 8,7 для MDEA и 7,9 для TEA.

Таким образом, алканоламины, в структурах которых содержится большее число гидроксильных групп и/или связей между атомами азота и водорода по сравнению с MDEA, и которые одновременно сохраняют низкую молекулярную массу и имеют силу основания (т.е. pKa) на уровне TEA или выше, представляли бы собой идеальных кандидатов для обработки сжиженного нефтяного газа в процессах контакта двух жидких фаз.

Введение 2-(гидроксиметил)пропан-1,3-диолового фрагмента в структуры алканоламинов позволяет уменьшать растворимость в углеводородных потоках по сравнению с имеющими эквивалентные структуры алканоламинами, в которых содержится 2-гидроксиэтильный фрагмент (т.е. традиционными этоксилированными алканоламинами). Сила основания амина, содержащего дополнительные гидроксильные группы, не изменяется по сравнению с традиционными этоксилированными алканоламинами, поскольку индуктивные эффекты, возникающие за счет присутствия более чем одной гидроксильной группы при том же заместителе у атома азота, не являются кумулятивными.

В целях настоящего изобретения сжиженные углеводороды представляют собой низкомолекулярные углеводороды, которые могут быть насыщенными или ненасыщенными, разветвленными или неразветвленными и содержащими в своем составе приблизительно от C1 до С20, предпочтительно приблизительно от C1 до С12 и предпочтительнее приблизительно от С2 до С6 атомов углерода, такие как, например, LPQ или NGL, а также их смеси.

Краткое описание чертежей

Фиг. 1 представляет графическую иллюстрацию исследуемых аминов, сравниваемых с MDEA, по относительной растворимости, которая приведена на графике зависимости от соответствующих значений pKa.

Подробное описание предпочтительных вариантов осуществления

В целом, настоящее изобретение представляет собой способ обработки сжиженных углеводородов, включающий удаление кислых газов при одновременном сокращении до минимума потери аминосоединений. Данный способ включает стадию контакта сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, причем первое аминосоединение имеет структуру:

в которой каждый из радикалов R1 и R2 может индивидуально представлять собой атом водорода, метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, 2-гидроксиэтил или пропан-2,3-диол.

До настоящего времени, согласно предшествующему уровню техники, обычно использовались амины, имеющие относительно высокую растворимость в жидких углеводородах. Настоящее изобретение решает эту проблему, предлагая аминосоединение, имеющее меньшую растворимость в газах. Эта высокая растворимость в газах для композиций MDEA и DIPA предшествующего уровня техники представлена на Фиг. 1.

Большинство газоперерабатывающих заводов работают при суммарной концентрации аминов, составляющей не более чем приблизительно 35 масс. % амина, содержащегося в водной композиции для обработки газов. Желательной является работа на уровне, составляющем приблизительно 40 масс. % и предпочтительно даже приблизительно 50 масс. % или более суммарного содержания амина (аминов), поскольку высококонцентрированные растворы обеспечивают дополнительную способность удаления кислых газов при низкой стоимости. Кроме того, считается вероятным, что в будущем будет увеличиваться концентрация серы в сырой нефти и, следовательно, в газе.

Соответственно, чтобы поддерживать или увеличивать производство, газоперерабатывающий завод должен в среднем обрабатывать/удалять больше серы. Тем не менее вследствие возрастающей потери аминов при повышенных концентрациях в большинстве случаев оказывается экономически невыгодной работа на уровне, превышающем приблизительно 35%. Преимущество настоящего изобретения заключается в том, что оно позволяет газоперерабатывающему заводу экономично работать при повышенных концентрациях аминов без значительных затрат на восполнение потерь аминов, которые бы происходили в других условиях.

Аминосоединение, используемое в способе согласно настоящему изобретению, как правило, имеет структуру:

в которой каждый из радикалов R1 и R2 может индивидуально представлять собой атом водорода, метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, 2-гидроксиэтил или пропан-2,3-диол.

Способы, известные специалистам в данной области техники, можно использовать при синтезе соединений, пригодных для способа согласно настоящему изобретению, такие как способы, описанные в опубликованной международной патентной заявке РСТ WO 2010/126657, которая включается в настоящий документ посредством ссылки.

Соединения, предусмотренные для использования согласно настоящему изобретению, предпочтительно включают перечисленные ниже соединения, такие как 2-диметиламино-2-(гидроксиметил)пропан-1,3-диол (DMTA, 2), 2-амино-2-(гидроксиметил)пропан-1,3-диол (ТА, 3), 2-метиламино-2-(гидроксиметил)пропан-1,3-диол (МТА, 4), а также их смеси.

Помимо первого аминосоединения, используемого в способе согласно настоящему изобретению, водный раствор, используемый для обессеривания LPG, может содержать и второе аминосоединение. Аминосоединения, пригодные для использования в качестве второго аминосоединения, включают аминопропандиоловые соединения, такие как 3-(2-(гидроксиэтил)метиламино)пропан-1,2-диол, 3-(метиламино)бис(пропан-1,2-диол), амино-трис(пропан-1,2-диол), 3-(метиламино)пропан-1,2-диол, 3-(амино)пропан-1,2-диол, 3-(амино)бис(пропан-1,2-диол), или их смеси; пиперазиновые соединения, такие как 3-(пиперазин-1-ил)пропан-1,2-диол, 3,3'-(пиперазин-1,4-диил)бис(пропан-1,2-диол), или их смеси, алкиламины, такие как моноэтаноламин, диэтаноламин, триэтаноламин, метилдиэтаноламин, диизопропаноламин, или их смеси; и смеси соединений, относящихся к каждому из данных классов перечисленных выше соединений.

Способ обработки

Способ согласно настоящему изобретению можно легко осуществлять посредством контакта потоков сжиженного газа со смесью 2-амино-2-(гидроксиметил)пропан-1,3-диоловых соединений, используя обычное оборудование для введения в контакт двух жидких фаз в технологических условиях, находящихся в обычных пределах такого оборудования. Хотя предпочтительно следует осуществлять некоторую оптимизацию условий на основании предшествующего уровня техники, необходимо ожидать, что уменьшение потерь, связанных с растворимостью аминов, будет происходить даже в существующих технологических условиях. Следующее преимущество согласно настоящему изобретению, таким образом, заключается в том, что для него не требуются существенные замены или модификации оборудования, уплотнения, технологических условий и т.п. Соответственно, настоящее изобретение является особенно выгодным для газоперерабатывающих заводов, которым требуется повышение производительности удаления кислых газов, но которые не могут себе позволить оплату значительного обновления основных средств.

Следующее преимущество настоящего изобретения заключается в том, что технологические параметры не ограничиваются узкими интервалами. В качестве общего правила, можно отметить, что чем выше концентрация аминов в системе, тем выше степень их потери. Примерные концентрации приведены ниже. Хотя не существует конкретного верхнего предела концентрации, предполагается, что концентрация аминов в смеси не должна составлять более чем приблизительно 95 масс. %, причем остальную массу составляет вода, чтобы преодолевать технологические проблемы, такие как недостаточное удаление H2S. Рациональный подход к определению максимально пригодной для использования концентрации в данной системе представляет собой постепенное повышение концентрации до тех пор, пока не обнаруживаются проблемы, и после этого осуществляется снижение концентрации до тех пор, пока данные проблемы не исчезают.

Аналогичным образом, не существует обязательной минимальной концентрации, и для определения этой концентрации могут потребоваться обычные эксперименты. Однако предполагается, в качестве исходной точки, что концентрация должна составлять, по меньшей мере, приблизительно 5 масс. %. Считается, что в большинстве случаев интервал используемых концентраций аминов в смеси составляет от приблизительно 10 до приблизительно 90 масс. %, предпочтительно от приблизительно 25 до приблизительно 75 масс. % и предпочтительнее от приблизительно 35 до приблизительно 65 масс. %, а остальную массу составляет вода.

Кроме того, в водной абсорбирующей композиции могут также содержаться кислоты, такие как борная кислота, серная кислота, хлористоводородная кислота, фосфорная кислота, а также их смеси. Эффективная концентрация кислоты может изменяться, составляя от 0,1 до 25 масс. % и наиболее предпочтительно от 0,1 до 12 масс. %. Источник кислоты обеспечивает эффективное восстановление аминосоединения после того, как кислый газ удаляется из система.

Рабочая температура для контакта сжиженных газообразных углеводородов с содержащей амины смесью не ограничивается в узком интервале, но обычно составляет от приблизительно 50°F (10°С) до приблизительно 190°F (88°С), предпочтительно от приблизительно 70°F (21°С) до приблизительно 160°F (71°С) и предпочтительнее от приблизительно 80°F (27°С) до приблизительно 140°F (60°С). Как правило, пониженные температуры являются предпочтительными в целях сокращения до минимума потерь, обусловленных растворимостью. Поскольку большинство газоперерабатывающих заводов не отличаются значительной гибкостью в данном отношении, преимущество согласно настоящему изобретению заключается в том, что обеспечивается существенное уменьшение потери аминов при любой заданной рабочей температуре.

Рабочие примеры

Следующие примеры представляют неограничительную иллюстрацию отличительных особенностей настоящего изобретения.

Раствор, содержащий гептан (10 г), толуол (0,1 г) и исследуемый амин (2,5 г), перемешивают при 20°С в течение одного часа. Смесь декантируют в течение 15 минут, и чистую гептановую фазу анализируют методом газовой хроматографии, используя толуол в качестве внутреннего стандарта. Впрыскивание повторяют три раза, и площади пиков исследуемого амина усредняют. Результаты представлены ниже:

Значение pKa исследуемых аминов определяли с помощью автоматической системы титрования Mettler Toledo с использованием водных растворов, содержащих 50 масс. % аминов и 0,5 н хлористоводородной кислоты. Результаты представлены ниже:

Несмотря на то что настоящее изобретение описано в отношении предпочтительных вариантов осуществления, которые представлены в описании и на чертежах, имеют место и другие варианты осуществления настоящего изобретения без отклонения от его сущности. Таким образом, объем настоящего изобретения должен ограничиваться только прилагаемой формулой изобретения.

Похожие патенты RU2643358C2

название год авторы номер документа
СПОСОБ ОБРАБОТКИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ 3-(АМИНО)ПРОПАН-1,2-ДИОЛЬНЫХ СОЕДИНЕНИЙ 2013
  • Ларош Кристоф
  • Хилл Джеймс М.
RU2636517C2
СПОСОБ ОЧИСТКИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ С ПРИМЕНЕНИЕМ СОЕДИНЕНИЙ 3-(ПИПЕРАЗИН-1-ИЛ)ПРОПАН-1, 2 ДИОЛА 2013
  • Ларош Кристоф
  • Хилл Джеймс М.
RU2640262C2
СПОСОБ УДАЛЕНИЯ КИСЛЫХ ГАЗОВ ИЗ ГАЗООБРАЗНЫХ СМЕСЕЙ С ИСПОЛЬЗОВАНИЕМ ВОДНОГО РАСТВОРА 2-ДИМЕТИЛАМИНО-2-ГИДРОКСИМЕТИЛ-1,3-ПРОПАНДИОЛА 2015
  • Ларош Кристоф Р.
  • Доудл Джон Р.
RU2702576C2
ВОДНАЯ КОМПОЗИЦИЯ С АЛКАНОЛАМИНОМ И СПОСОБ УДАЛЕНИЯ КИСЛЫХ ГАЗОВ ИЗ ГАЗОВЫХ СМЕСЕЙ 2013
  • Ларош Кристоф Р.
  • Падилья Херардо
  • Хэлнон Тимоти Д.
RU2635620C2
НОВЫЕ ПОЛИАМИНЫ, СПОСОБ ИХ СИНТЕЗА И ИХ ПРИМЕНЕНИЕ ДЛЯ СЕЛЕКТИВНОГО УДАЛЕНИЯ HS ИЗ ГАЗОВОГО ПОТОКА, СОДЕРЖАЩЕГО CO 2016
  • Дельфор Брюно
  • Николя Антуан
  • Юар Тьерри
  • Вендер Орели
  • Лефевр Катрин
  • Лалу Николя
  • Гайяр Карин
RU2732132C2
СПОСОБ ДЕКАРБОНИЗАЦИИ УГЛЕВОДОРОДНОГО ГАЗА 2014
  • Гоннар Себастьен
  • Лалу Николя
  • Леруа Аньес
  • Пердю Готье
RU2666865C2
АБСОРБИРУЮЩИЙ РАСТВОР НА ОСНОВЕ ГИДРОКСИЛЬНЫХ ПРОИЗВОДНЫХ 1,6-ГЕКСАНДИАМИНА И СПОСОБ УДАЛЕНИЯ КИСЛОТНЫХ СОЕДИНЕНИЙ ИЗ ГАЗООБРАЗНОГО ОТХОДЯЩЕГО ПОТОКА 2016
  • Дельфор Брюно
  • Гранжан Жюльен
  • Юар Тьерри
  • Жиродон Летисия
  • Лефевр Катрин
  • Вендер Орели
  • Нигон Армелль
RU2735544C2
ПРОИЗВОДСТВО ОЧИЩЕННОГО УГЛЕВОДОРОДНОГО ГАЗА ИЗ ГАЗОВОГО ПОТОКА, СОДЕРЖАЩЕГО УГЛЕВОДОРОДЫ И КИСЛЫЕ ЗАГРЯЗНИТЕЛИ 2009
  • Геерс Хенрикус Абрахам
  • Принс Уильям Дейвид
RU2498175C2
СПОСОБ ОТДЕЛЕНИЯ СЕРОВОДОРОДА ОТ ГАЗОВЫХ СМЕСЕЙ С ИСПОЛЬЗОВАНИЕМ ГИБРИДНОЙ СМЕСИ РАСТВОРИТЕЛЕЙ 2017
  • Даудл, Джон Р.
  • Ларош, Кристоф Р.
  • Ортиз Вега, Диего
  • Пиртл, Линда Л.
RU2736714C1
СПОСОБ ОЧИСТКИ СИНТЕЗ-ГАЗА ПУТЕМ ПРОМЫВКИ ВОДНЫМИ РАСТВОРАМИ АМИНОВ 2014
  • Шиш Давид
  • Люкан Анн Клэр
  • Улльрих Норберт
RU2668925C1

Иллюстрации к изобретению RU 2 643 358 C2

Реферат патента 2018 года СПОСОБ ОБРАБОТКИ СЖИЖЕННЫХ ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ 2-АМИНО-2-(ГИДРОКСИМЕТИЛ)ПРОПАН-1,3-ДИОЛОВЫХ СОЕДИНЕНИЙ

Изобретение относится к способу обработки сжиженных углеводородов. Способ обработки сжиженных углеводородов, содержащих кислые газы, для отделения вышеупомянутых кислых газов при одновременном сокращении до минимума потери аминосоединений включает стадию контакта сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, где первое аминосоединение имеет структуру

в которой либо: a) R1 является водородом и R2 выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси; или b) R1 выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси; или c) каждый из R1 и R2 индивидуально выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси. Технический результат – сокращение потери аминов при обработке. 8 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 643 358 C2

1. Способ обработки сжиженных углеводородов, содержащих кислые газы, для отделения вышеупомянутых кислых газов при одновременном сокращении до минимума потери аминосоединений, включающий стадию контакта вышеупомянутых сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, где вышеупомянутое первое аминосоединение имеет структуру

в которой либо:

a) R1 является водородом и R2 выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси; или

b) R1 выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси, и R2 является водородом; или

c) каждый из R1 и R2 индивидуально выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила и пропан-2,3-диола, а также их смеси.

2. Способ по п. 1, в котором вышеупомянутый абсорбирующий водный раствор содержит приблизительно от 0,1 мас.% до 90 мас.% вышеупомянутого первого аминосоединения и дополнительно содержит приблизительно от 1 мас.% до 90 мас.% второго аминосоединения.

3. Способ по п. 1, в котором вышеупомянутый абсорбирующий водный раствор содержит приблизительно от 0,1 мас.% до 50 мас.% вышеупомянутого первого аминосоединения и дополнительно содержит приблизительно от 5 мас.% до 50 мас.% второго аминосоединения.

4. Способ по п. 1, в котором R1 и R2 представляют собой метильные радикалы.

5. Способ по п. 1, в котором R1 представляет собой атом водорода, и R2 представляет собой метильный радикал.

6. Способ по п. 1, в котором вышеупомянутые кислые газы содержат один или несколько газов, выбранных из группы, которую составляют CO2, H2S, меркаптановое соединение, COS, CS2, а также их смеси.

7. Способ по п. 1 или 2, в котором вышеупомянутый водный раствор содержит второе аминосоединение, представляющее собой пиперазиновое соединение, выбранное из группы, которую составляют пиперазин, 2-метилпиперазин, 1-гидроксиэтилпиперазин, 3-(пиперазин-1-ил)пропан-1,2-диол, 3,3'-(пиперазин-1,4-диил)бис(пропан-1,2-диол), и их смеси.

8. Способ по п. 1, в котором вышеупомянутый абсорбирующий водный раствор содержит второе аминосоединение, представляющее собой соединение, выбранное из группы, состоящей из триэтаноламина, диэтаноламина, метилдиэтаноламина, диизопропаноламина, 3-(2-(гидроксиэтил)метиламино)пропан-1,2-диола, 3-(метиламино)бис(пропан-1,2-диола), амино-трис(пропан-1,2-диола), 3-(метиламино)пропан-1,2-диола, 3-(амино)пропан-1,2-диола, 3-(амино)бис(пропан-1,2-диола) и их смеси.

9. Способ по п. 1, в котором вышеупомянутый абсорбирующий водный раствор дополнительно содержит кислоту, которая выбрана из группы, состоящей из борной кислоты, хлористоводородной кислоты, серной кислоты, фосфорной кислоты, а также их смеси.

Документы, цитированные в отчете о поиске Патент 2018 года RU2643358C2

US 5877386 A, 02.03.1999
Теплоизоляционный материал 1975
  • Ростомян Роза Мовсесовна
  • Копейкин Владимир Алексеевич
  • Арутюнова Анна Аршаковна
SU558019A1
EA 200601957 A1, 27.02.2007
АБСОРБЕНТ, УСТАНОВКА ДЛЯ СНИЖЕНИЯ СОДЕРЖАНИЯ CO ИЛИ HS И СПОСОБ СНИЖЕНИЯ СОДЕРЖАНИЯ CO ИЛИ HS С ИСПОЛЬЗОВАНИЕМ АБСОРБЕНТА 2008
  • Иноуэ Юкихико
  • Йосияма Риюдзи
  • Оиси Цуёси
  • Иидзима Масаки
  • Таноура Масазуми
  • Мимура Томио
  • Яги Ясуюки
RU2446861C2
WO 2010126657 A1, 04.11.2010
Вакуум-аппарат 1929
  • Гейштовт М.А.
SU13794A1
ОБЪЕДИНЕННЫЙ СПОСОБ УДАЛЕНИЯ ТЯЖЕЛЫХ УГЛЕВОДОРОДОВ, АМИНОВОЙ ОЧИСТКИ И ОСУШКИ 2006
  • Митаритен Майкл Дж.
RU2408664C2
СПОСОБ ОЧИСТКИ ГАЗОВ 0
  • Иностранцы Филипп Реноль Андре Дешамп
  • Иностранна Фирма Инститю Франса Петроль Карбюран Любрифь
SU326765A1

RU 2 643 358 C2

Авторы

Ларош Кристоф

Хилл Джеймс М.

Даты

2018-02-01Публикация

2013-06-11Подача