СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ МАШИН И МЕХАНИЗМОВ ПО ПАРАМЕТРАМ ЧАСТИЦ ИЗНАШИВАНИЯ Российский патент 2018 года по МПК G01N23/223 

Описание патента на изобретение RU2646533C2

Изобретение относится к способам определения технического состояния двигателей, машин и механизмов по характеристикам металлических частиц износа, обнаруженных в смазочных маслах, топливах и специальных жидкостях.

Известны различные способы определения технического состояния двигателей по отдельным характеристикам износных частиц: концентрации микропримесей металлов в смазочном масле, топливе и специальных жидкостях; индексу износа; по числу износных частиц; их форме (Первая международная конференция «Энергодиагностика». Сб. трудов. М. 1995 г. Т. 3, стр. 120-152).

Известен способ оценки технического состояния авиадвигателя по изменению количества крупных частиц, отобранных с основного маслофильтра PALL (Методика РОЛЛС-РОЙС). Методика заключается в следующем. Для изъятия частиц из фильтрующего элемента у фильтра обрезаются верхняя и нижняя крышки, защитная сетка разрезается, распрямляются складки фильтрующих элементов, с металлической сетки «чистой» магнитной пробкой собираются частицы. Далее внутренняя и внешняя металлические сетки разъединяются, и фильтрующая мембрана отделяется от фильтра. Для оценки количества частиц отрезается сегмент мембраны фильтра шириной 5 см (2 дюйма) и длиной 20 см (8 дюймов) вдоль ее окружности, если возможно, вырезается центральная секция, потому что края могут быть загрязнены. Затем мембрана полностью опускается в керосин и обрабатывается в ультразвуковой ванне в течение около 5 минут, чтоб извлечь любые остатки, застрявшие в мембране. Исследование этого осадка позволяет более точно определить количество и тип частиц, высвобожденных при приближающемся отказе узла, например сферические частицы износа.

Для идентификации остатков используется сканирующий электронный микроскоп.

Техническое состояние двигателя оценивается по изменению количества крупных частиц с наработкой, их форме и составу. Для достоверной оценки технического состояния производят отбор проб с маслофильтра через 15 часов наработки двигателя.

Недостатками указанного способа являются:

1. Трудоемкость отбора частиц для исследования.

2. Возможность заражения инородными частицами.

3. Берется малая часть диагностической мембраны, что может повлиять на представительность отбираемых частиц.

4. При постановке диагноза учитываются только крупные частицы, в то время как дефект может развиваться по схеме преимущественного генерирования средних и мелких частиц.

5. Постановка диагноза на основании полуколичественных измерений параметров.

6. Для определения дефекта и его отслеживания необходимы результаты предыдущих измерений числа частиц и их состава, поскольку диагностика опирается на анализ тренда параметров частиц.

Ближайшим аналогом является способ поузловой трибодиагностики авиационной техники по параметрам частиц изнашивания (патент РФ №2491536, G01N 23/223, 2013 г.). Пробу масла (технической жидкости), отбираемой со штатных точек слива, тщательно перемешивают и разделяют на две части, одна часть пробы анализируется сцинтилляционным спектрометром 2, другая - рентгенофлуоресцентным анализатором с поликапиллярной оптикой 3. Сцинтилляционный анализатор 2 согласно предписанной ему методике измеряет параметры металлических частиц изнашивания в диапазоне их размеров от 0 (растворенные элементы) до 60-80 мкм, в зависимости от элемента. Верхняя граница определяется полнотой испарения металлической частицы в воздушной плазме атмосферного давления. Рентгенофлуоресцентный анализатор 3 измеряет параметры частиц изнашивания в диапазоне размеров от 50-80 мкм до массивных частиц размером в несколько миллиметров. Информация с обоих приборов поступает в базу данных, где анализируется специальной программой, которая сравнивает уровень параметров с параметрами статистической эталонной модели исправного двигателя и выдает информацию для принятия диагностического решения о дальнейшей эксплуатации двигателя.

Недостатком известного способа является следующее.

Для анализа используется проба масла, слитая со штатных точек слива (коробки приводов или маслобака), однако повсеместный переход к использованию фильтроэлемента QA-07930 и фильтроэлемента QA-07930-01 фирмы PALL с диагностическим слоем Dirt Allert с ячеей 10-15 мкм способствует практически полному очищению масла от частиц - продуктов изнашивания, которые осаждаются на фильтроэлементах, сосредотачивая здесь всю информацию об износных процессах в двигателе. В связи с этим для оценки технического состояния узлов трения, омываемых маслом, необходимо и достаточно анализировать только пробу смыва с фильтроэлементов основного маслофильтра или с дополнительного диагностического слоя Dirt Allert (ленты), которым покрывается фильтроэлемент QA-07930-01 фирмы PALL.

Задачей предполагаемого изобретения является увеличение достоверности диагностирования путем измерения параметров частиц изнашивания, накопленных на фильтроэлементах основного маслофильтра, и оценки вклада крупных частиц в пробе смыва.

Поставленная задача достигается тем, что предлагается способ оценки технического состояния машин и механизмов по параметрам частиц изнашивания, включающий отбор пробы, предварительную ее подготовку, путем того, что отобранный смыв с основного фильтра тщательно перемешивают и разделяют на две части, первую часть анализируют на сцинтилляционном анализаторе, а вторую часть пробы дополнительно анализируют рентгенофлуоресцентным анализатором с поликапиллярной оптикой, поступившую информацию с обоих приборов записывают в базу данных, которая сравнивает уровень измеренных параметров с параметрами статистической эталонной модели исправного двигателя, выделяет диагностические признаки дефекта и выдает информацию для принятия диагностического решения о дальнейшей эксплуатации двигателя, отличающийся тем, что дополнительно оценивают долю крупных частиц в пробе смыва, для чего подготовленную пробу смыва делят на две части, первую часть пробы анализируют на сцинтилляционном спектрометре, а вторую, для выяснения вклада крупных частиц, просеивают через сетчатое сито, получая две фракции пробы +S и -S, где S - размер ячеек сита, фракцию +S и фракцию -S высаживают на мембранные фильтры «Владипор» и производят рентгенофлуоресцентные измерения интегральных интенсивностей линий элементов основы в обеих фракциях, берут отношение интенсивности элементов фракции +S к интенсивности соответствующих элементов фракции - S, оценивая массовый вклад фракции с крупными частицами по формуле k=I+S/LS, и в зависимости от коэффициента отношения интенсивностей проводят дополнительный анализ.

Размер ячеек сита берут в пределах 60-80 мкм.

При коэффициенте отношения интенсивности решение о техническом состоянии двигателя принимают только по результатам сцинтилляционных измерений, если же коэффициент отношения интенсивности , проводят рентгенофлуоресцентные измерения элементного состава крупных частиц (фракция +80 мкм) и решение о техническом состоянии двигателя принимают с учетом этих дополнительных измерений.

Способ осуществляется следующим образом.

Смыв осуществляют со всего фильтра без его разборки, что исключает вероятность заражения пробы посторонними частицами при распиле корпуса фильтра. Пробу смыва делят на 2 части. 1 часть исходной пробы смыва анализируют на сцинтилляционном анализаторе. Другую часть пробы рассеивают на сите с ячеей S мкм, получая две фракции пробы (+S и -S).

Для рентгенофлуоресцентного анализа фракций +S мкм и -S мкм последние высаживают на мембранный фильтр «Владипор» с размером ячеек 3-5 мкм. На рентгенофлуоресцентном анализаторе измеряют интенсивность линии элементов основы сплавов (железа, медь) во фракциях +S мкм и -S мкм и берут отношение этих интенсивностей k=I+S/LS. При незначительном вкладе крупных частиц (k<1) решение о техническом состоянии сопряженных узлов трения принимают по результатам измерения параметров частиц измеренным сцинтилляционным анализатором. Измеряют несколько относительных параметров, полностью характеризующих данную пробу и дающих возможность оценки технического состояния двигателя по одной пробе. Тренд во времени только уточнит диагноз и не является обязательным. Если в пробе + Sмкм обнаруживаются крупные частицы (k>1), их выделяют и направляют на рентгенофлуоресцентный микроанализ для уточнения элементного состава крупных частиц, дополняя результаты, полученные сцинтилляционным методом, с целью выявления степени развития дефекта неисправного узла. Поступившую информацию с обоих приборов записывают в базу данных, которая сравнивает уровень измеренных параметров с параметрами статистической эталонной модели исправного двигателя, выделяет диагностические признаки дефекта и выдает информацию для принятия диагностического решения о дальнейшей эксплуатации двигателя.

Диагностическое решение принимают по результатам сцинтилляционных и рентгенофлуоресцентных исследований. Сцинтилляционный анализатор, согласно предписанной ему методике, достаточно точно измеряет массовую долю элементов, содержащихся в металлических частицах изнашивания, и их средний размер в диапазоне размеров от 0 (растворенные элементы) до 70-80 мкм. Верхняя граница определяется полнотой испарения металлической частицы в воздушной плазме атмосферного давления. Однако относительный параметры, например количество и состав частиц, рейтинг, показатель износа и т.д., определяются с достаточной точностью и при значительно больших размерах металлических частиц, которые не полностью испаряются в плазме.

Совокупность использования двух приборов - сцинтилляционного и рентгенофлуоресцентного анализаторов - позволяет найти новые диагностические признаки обнаружения дефектов на ранней стадии их развития.

Пример конкретного выполнения.

Размер ячеек сита берут в пределах 80 мкм. Для анализа берут только пробу смыва, поскольку проба масла, отобранная с коробки приводов малоинформативна, см. таблицы 1 и 2 Приложения. Проводят смыв продуктов изнашивания с основного маслофильтра или диагностической ленты, проводят подготовку пробы смыва к анализу и разделяют на две части, одну часть пробы анализируют на сцинтилляционном анализаторе, определяя уровень параметров частиц изнашивания, а другую рассевают на сите с ячейкой 80 мкм, готовят мишени для ренгенофлуоресцентного анализа, высаживают фракцию +80 мкм и фракцию -80 мкм на мембранный фильтр «Владипор» и анализируют каждую фракцию на ренгенофлуоресцентном анализаторе, измеряя интегральные интенсивности линий элементов основы, по отношению интенсивностей линий элементов во фракции +80 мкм к интенсивности соответствующих элементов во фракции -80 мкм оценивают вклад крупных частиц. При коэффициенте отношения интенсивности решение о техническом состоянии двигателя принимают только по результатам сцинтилляционных измерений, если же коэффициент отношения интенсивности , проводят рентгенофлуоресцентные измерения элементного состава крупных частиц (фракция +80 мкм) и решение о техническом состоянии двигателя принимают с учетом этих дополнительных измерений.

В качестве дополнительных примеров прилагаются протоколы диагностики конкретных двигателей (см. Приложение).

Технический эффект изобретения заключается в том, что:

1. Разработана технология извлечения частиц изнашивания с диагностических лент и фильтроэлементов, исключающая заражение частиц изнашивания посторонними частицами.

2. Для оценки технического состояния (Т/С) используется весь диапазон размеров частиц, уловленных фильтроэлементом.

3. Практически полное извлечение частиц с фильтроэлементов и диагностических лент.

4. Для устранения влияния размеров частиц и типа изнашивания на достоверность оценки (Т/С) омываемых маслом узлов трения двигателя применяется комплексная методика измерения параметров частиц на атомно-эмиссионном сцинтилляционном анализаторе и рентгенофлуоресцентном анализаторе.

5 Применение двух методов, работающих в разных диапазонах размеров частиц (сцинтилляционный метод - от 0 мкм до 80 мкм, рентгенофлуоресцентный от 80 мкм до 1000 мкм и более), позволяет перекрыть весь диапазон размеров частиц изнашивания, генерируемых в маслосистеме двигателей. Это исключает пропуск дефекта даже при выкрашивании обойм и тел качения подшипников, когда число частиц мало, да и те мгновенно оседают на фильтроэлементах.

Похожие патенты RU2646533C2

название год авторы номер документа
СПОСОБ ПОУЗЛОВОЙ ТРИБОДИАГНОСТИКИ АВИАЦИОННОЙ ТЕХНИКИ ПО ПАРАМЕТРАМ ЧАСТИЦ ИЗНАШИВАНИЯ 2012
  • Дроков Виктор Григорьевич
  • Скудаев Юрий Дмитриевич
  • Халиулин Виталий Фердинандович
RU2491536C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРОСТЫХ И СЛОЖНЫХ ЧАСТИЦ ИЗНОСА В МАСЛОСИСТЕМЕ ДВИГАТЕЛЯ 2004
  • Гайдай Максим Станиславович
  • Дроков Виктор Григорьевич
  • Кузменко Михаил Леонидович
  • Матвеенко Георгий Петрович
  • Овчинин Николай Николаевич
  • Скудаев Юрий Дмитриевич
  • Червонюк Владимир Васильевич
RU2275618C2
СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ДВИГАТЕЛЕЙ, МАШИН И МЕХАНИЗМОВ 2005
  • Горбунов Александр Иннокентьевич
  • Дроков Виктор Григорьевич
  • Иноземцев Александр Александрович
  • Казмиров Александр Дмитриевич
  • Скудаев Юрий Дмитриевич
  • Чернов Валерий Иванович
RU2285907C1
СПОСОБ ДИАГНОСТИКИ СОСТОЯНИЯ ДВИГАТЕЛЕЙ 2001
  • Гайдай М.С.
  • Дроков В.Г.
  • Казмиров А.Д.
  • Овчинин Н.Н.
  • Скудаев Ю.Д.
RU2239172C2
СПОСОБ ДИАГНОСТИКИ СОСТОЯНИЯ ДВИГАТЕЛЕЙ 2001
  • Алхимов А.Б.
  • Дроков В.Г.
  • Морозов В.Н.
  • Скудаев Ю.Д.
RU2216717C2
СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПОДШИПНИКОВ ТРАНСМИССИИ АВИАЦИОННЫХ ДВИГАТЕЛЕЙ 2002
  • Гайдай М.С.
  • Дроков В.Г.
  • Кузменко М.Л.
  • Матвеенко Г.П.
  • Овчинин Н.Н.
  • Скудаев Ю.Д.
  • Червонюк В.В.
RU2251674C2
СПОСОБ СПЕКТРАЛЬНОГО АНАЛИЗА 2001
  • Алхимов А.Б.
  • Дроков В.Г.
  • Казмиров А.Д.
  • Морозов В.Н.
  • Скудаев Ю.Д.
RU2226685C2
СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2007
  • Макаров Виктор Петрович
  • Горбунов Александр Иннокентьевич
  • Халиуллин Виталий Фердинандович
RU2369854C2
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МИКРОПРИМЕСЕЙ МЕТАЛЛОВ В СМАЗОЧНЫХ МАСЛАХ, ТОПЛИВАХ И СПЕЦИАЛЬНЫХ ЖИДКОСТЯХ 1998
  • Алхимов А.Б.
  • Дроков В.Г.
  • Зарубин В.П.
  • Казмиров А.Д.
  • Морозов В.Н.
  • Подрезов А.М.
  • Скудаев Ю.Д.
RU2182330C2
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОПРИМЕСЕЙ МЕТАЛЛОВ В СМАЗОЧНЫХ МАСЛАХ, ТОПЛИВАХ И СПЕЦИАЛЬНЫХ ЖИДКОСТЯХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Алхимов А.Б.
  • Дроков В.Г.
  • Зарубин В.П.
  • Казмиров А.Д.
  • Морозов В.Н.
  • Подрезов А.М.
  • Скудаев Ю.Д.
RU2118815C1

Реферат патента 2018 года СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ МАШИН И МЕХАНИЗМОВ ПО ПАРАМЕТРАМ ЧАСТИЦ ИЗНАШИВАНИЯ

Изобретение относится к способам определения технического состояния двигателей, машин и механизмов по характеристикам металлических частиц износа, обнаруженных в смазочных маслах, топливах и специальных жидкостях. Заявленный способ оценки технического состояния машин и механизмов по параметрам частиц изнашивания включает отбор пробы, предварительную ее подготовку путем того, что отобранный смыв с основного фильтра тщательно перемешивают и разделяют на две части. Первую часть анализируют на сцинтилляционном анализаторе, а вторую часть пробы дополнительно анализируют рентгенофлуоресцентным анализатором с поликапиллярной оптикой, поступившую информацию с обоих приборов записывают в базу данных, которая сравнивает уровень измеренных параметров с параметрами статистической эталонной модели исправного двигателя, выделяет диагностические признаки дефекта и выдает информацию для принятия диагностического решения о дальнейшей эксплуатации двигателя. Дополнительно оценивают долю крупных частиц в пробе смыва, для чего подготовленную пробу смыва делят на две части, первую часть пробы анализируют на сцинтилляционном спектрометре, а вторую, для выяснения вклада крупных частиц, просеивают через сетчатое сито, получая две фракции пробы +S и -S, где S - размер ячеек сита, фракцию +S и фракцию -S высаживают на мембранные фильтры «Владипор» и производят рентгенофлуоресцентные измерения интегральных интенсивностей линий элементов основы в обеих фракциях. Далее берут отношение интенсивности элементов фракции +S к интенсивности соответствующих элементов фракции -S, оценивая массовый вклад фракции с крупными частицами по формуле k=I+S/LS, и в зависимости от коэффициента отношения интенсивностей проводят дополнительный анализ. Размер ячеек сита берут в пределах 60-80 мкм. При коэффициенте отношения интенсивности решение о техническом состоянии двигателя принимают только по результатам сцинтилляционных измерений, если же коэффициент отношения интенсивности , проводят рентгенофлуоресцентные измерения элементного состава крупных частиц (фракция +80 мкм) Решение о техническом состоянии двигателя принимают с учетом этих дополнительных измерений. Технический результат - увеличение достоверности диагностирования путем измерения параметров частиц изнашивания, накопленных на фильтроэлементах основного маслофильтра, и оценки вклада крупных частиц в пробе смыва. 2 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 646 533 C2

Способ оценки технического состояния машин и механизмов по параметрам частиц изнашивания, включающий отбор пробы, предварительную ее подготовку, путем того, что отобранный смыв с основного фильтра тщательно перемешивают и разделяют на две части, первую часть анализируют на сцинтилляционном анализаторе, а вторую часть пробы дополнительно анализируют рентгенофлуоресцентным анализатором с поликапиллярной оптикой, поступившую информацию с обоих приборов записывают базу данных, которая сравнивает уровень измеренных параметров с параметрами статистической эталонной модели исправного двигателя, выделяет диагностические признаки дефекта и выдает информацию для принятия диагностического решения о дальнейшей эксплуатации двигателя, отличающийся тем, что дополнительно, оценивают долю крупных частиц в пробе смыва, для чего подготовленную пробу смыва делят на две части, первую часть пробы анализируют на сцинтилляционном спектрометре, а вторую, для выяснения вклада крупных частиц, просеивают через сетчатое сито, получая две фракции пробы +S и -S, где S - размер ячеек сита, фракцию +S и фракцию -S высаживают на мембранные фильтры «Владипор» и производят рентгенофлуоресцентные измерения интегральных интенсивностей линий элементов основы в обеих фракциях, берут отношение интенсивности элементов фракции +S к интенсивности соответствующих элементов фракции -S, оценивая массовый вклад фракции с крупными частицами по формуле k=I+S/LS, и в зависимости от коэффициента отношения интенсивностей проводят дополнительный анализ.

2. Способ по п. 1, отличающийся тем, что размер ячеек сита берут в пределах 60-80 мкм.

3. Способ по п. 1, отличающийся тем, что при коэффициенте отношения интенсивности решение о техническом состоянии двигателя принимают только по результатам сцинтилляционных измерений, если же коэффициент отношения интенсивности , проводят рентгенофлуоресцентные измерения элементного состава крупных частиц (фракция +80 мкм) и решение о техническом состоянии двигателя принимают с учетом этих дополнительных измерений.

Документы, цитированные в отчете о поиске Патент 2018 года RU2646533C2

СПОСОБ ПОУЗЛОВОЙ ТРИБОДИАГНОСТИКИ АВИАЦИОННОЙ ТЕХНИКИ ПО ПАРАМЕТРАМ ЧАСТИЦ ИЗНАШИВАНИЯ 2012
  • Дроков Виктор Григорьевич
  • Скудаев Юрий Дмитриевич
  • Халиулин Виталий Фердинандович
RU2491536C1
US 5982847 A1, 09.11.1999
Бушманов В.В
и др
Способ обработки медных солей нафтеновых кислот 1923
  • Потоловский М.С.
SU30A1
Вестник Самарского государственного аэрокосмического университета им
академика С.П
Королёва (национального исследовательского университета)
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Пововаров В.А
и др
КРАТКИЕ СВЕДЕНИЯ О МЕТОДАХ ДИАГНОСТИКИ ГТД ПО РЕЗУЛЬТАТАМ АНАЛИЗА АВИАМАСЕЛ
Диагностика и неразрушающий контроль ЛА и АД: Пособие по выполнению лабораторной работы "Методы диагностики газотурбинных двигателей по результатам анализа работавших масел", 2012.

RU 2 646 533 C2

Авторы

Дроков Виктор Григорьевич

Дроков Владислав Викторович

Лисун Иван Васильевич

Мурыщенко Владимир Валерьевич

Скудаев Юрий Дмитриевич

Даты

2018-03-05Публикация

2015-07-21Подача