СПОСОБ МОНИТОРИНГА НАРУШЕНИЙ МИКРОГЕМОДИНАМИКИ В ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЕ ЛАБОРАТОРНЫХ КРЫС Российский патент 2018 года по МПК A61B5/02 

Описание патента на изобретение RU2648037C1

Изобретение относится к медицине, также может найти применение в функциональной диагностике и предназначено для мониторинга микрогемодинамики в поджелудочной железе в процессе хирургического вмешательства с помощью технологии спекл-контрастной визуализации.

Мониторинг состояния микрогемодинамики является одной из важных проблем современной медицинской диагностики. Это связано с тем, что многие заболевания, такие как заболевания сердечно-сосудистой системы, атеросклероз, сахарный диабет, хроническая венозная недостаточность и другие, вызывают функциональные и морфологические изменения в микроциркуляторном русле. Повреждения на уровне микроциркуляции/макроциркуляции составляют основу развития стресс-индуцированных заболеваний, таких как гастроинтестинальные геморрагии, артериальная гипертония, геморрагический панкреатит, инфаркт миокарда, инсульты и т.д. В настоящее время изучение системы микроциркуляции представляет собой сочетание традиционных и новых морфологических и функциональных методов анализа. Применяемые морфологами методы изучения микроциркуляторного русла на аутопсийном и биопсийном материалах имеют ряд недостатков, связанных с определением состояния интрамуральных сосудов преимущественно на поперечных и косых срезах, а также большими трудностями при исследовании одновременно сосудов гемо- и лимфоциркуляции. Морфологические исследования микрогемодинамики, проводящиеся в большинстве случаев биопсийным методом, отражают состояние микроциркуляции только в конкретной точке и не могут отражать динамические процессы.

В настоящее время к наиболее эффективным диагностическим методам определения основных параметров микрогемодинамики относятся методы, основанные на динамическом рассеянии света (методы лазерной доплеровской флоуметрии (BonnerR., NossalR. Model for laser Doppler measurement sofblood flowintissue // Appl. Opt. – 1981. – V.20. – P. 2097–2107; Serov A., Steinacher B., Lasser T. Full-fieldlaser Doppler perfusion imaging and monitoring with an intelligent CMOS camera // Opt. Express. – 2005. – V.13. – P.3681–3689), интравитальная микроскопия (KalchenkoV., HarmelinA., FineI., ZharovV., GalanzhaE., TuchinV. Advances in intravital microscopy for monitoring cell flow dynamics in vivo // Proc. SPIE. – 2007. – V. 6436, №64360D-P.1–15; KedrinD., GligorijevicB., Wyckoff J.,Verkhusha V. V., Condeelis J., Segall J. E., Rheenen J. Intravital imaging of metastatic behavior through a mammary imaging window // Nature Methods. – 2008. –V.5. - P.141-175), спекл-визуализация (ChengH., Luo Q., Zeng S. Modified laser speckle imaging method with improved spatial resolution // J. Biomed. Opt. – 2003. – V. 8, № 3. – P. 559- 564; Sigal I., Gad R., Caravaca-Aguirre M., Atchia Y., Conkey D., R. Piestun, Ofer L. Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging // Biomed. Opt. Express. – 2014 – V.5, № 1. – P. 123–134; Dunn A.K., Bolay H., Moskowitz M.A., Boas D.A. Impact of velocity distribution assumption on simplified laser speckle imaging equation // J. Cereb. Blood Flow Metab. – 2001. – V.21. – P. 195–201) и другие), а также методы, основанные на принципах доплеровской оптической когерентной томографии (Doblhoff-Dier V., Schmetterer L., Vilser W., Garhöfer G., Gröschl M., LeitgebR., Werkmeister R. Measurement of the total retinal blood flow using dual beam Fourier-Domain Doppler Optical Coherence Tomography with orthogonal detection planes // Biomed. Opt. Express. – 2014. – V.5, №2. - P. 630; Huang Y., Ibrahim Z., Tong D., Zhu S., Mao Q., Pang J., Lee W. P. A.). Многие из перечисленных методов имеют ряд существенных ограничений, например, недостаточно высокое пространственное и временное разрешение, ограниченность информации о потоке частиц, особенно при сканировании по глубине биоткани, некоторая инвазивность измерений и др. Совмещение методов динамического рассеяния света (ДРС) и микроскопии позволяет получить высокоэффективный инструмент для определения параметров микрогемодинамики.

Каковы бы ни были специфические патофизиологические причины такого грозного заболевания, как панкреатит, центральная патогенетическая роль в его прогрессировании, с последствиями в виде тканевой гипоксии и (или) аноксии, принадлежит микроциркуляторным нарушениям. Особый интерес представляют работы Warshaw и соавт.(Warshaw А. Pain in chronic pancreatitis. // Gastroenterol. - 1984. – V. 86, № 5. - P.987-989), приведшие клинические доказательства высокой чувствительности поджелудочной железы к снижению перфузии и ишемии и показавшие, наряду с другими авторами, что первичные или вторичные нарушения кровотока в поджелудочной железе вызывают в ней патологические изменения. Самыми значимыми событиями динамики острого панкреатита являются – высвобождение местных медиаторов (цитокинов, вазоактивных субстанций, свободных радикалов кислорода) и существенное прогрессирование микроциркуляторных нарушений, а также активация лейкоцитов и их инфильтрация в ткань. Экспериментальные модели панкреатической ишемии-реперфузии также показали, что ишемия и, в особенности, реперфузия, связаны с лейкоцитарной адгезией и агрегацией, нарушением микрогемодинамики, формированием отека, возрастанием выхода в циркуляцию панкреатических ферментов и гистоморфологическими изменениями, сходными с теми, что наблюдаются при остром панкреатите. Было обнаружено, что выраженность этих изменений зависит от длительности ишeмии и реперфузии, при этом геморрагически-некротизирующий панкреатит развивается через 5 суток реперфузии. Кроме потенцирующей роли, тяжелая ишемия поджелудочной железы может играть главную роль и в инициации панкреатита.

Известен способ оценки микроциркуляции крови в поверхностных тканях (см. патент US на изобретение №7113817, МПК A61B6/00). В способе освещают поверхность ткани лазерным источником света; отраженный и рассеянный свет попадает на матрицу детектора, где проводят анализ спеклов и определяют характеристику изменений потока крови. В данном способе для описания распределения скоростей эритроцитов используют функции распределения Лоренца и Максвелла, т.е. оценивают модель случайного движения эритроцитов.

Однако в случае оценки скорости кровотока в сосудах поджелудочной железы важно учитывать направленное распространение эритроцитов по сосуду, нужно использовать другую функцию распределения для направленного движения частиц.

Наиболее близким к заявляемому является способ оценки микрогемодинамики поджелудочной железы (см. Александров Д.А., Тимошина П.А., Тучин В.В., Маслякова Г. Н., Палатова Т.В., Седов Д.С., Измайлов Р.Р. Динамика показателей лазерной спекл-визуализации кровотока в тканях при временной частичной локальной ишемии поджелудочной железы у голодных, сытых и алкоголизированных крыс // Саратовский научно-медицинский журнал. - 2016. – Т.12, №2. – C. 106–109). Способ включает измерение контраста усредняемых по времени динамических спеклов в зависимости от времени усреднения спекл-модулированных изображений с помощью программы, созданной в среде LabVIEW 8.5 (NationalInstruments, США). Контраст усредняемых по времени динамических спеклов – это безразмерная величина, чувствительная к изменениям микрогемодинамики (обратно пропорциональна скорости кровотока). По изменению контраста судят об изменениях микрогемодинамики.

Однако прототип позволяет осуществить только качественный анализ изменений микроциркуляции, что не позволяет получить абсолютных значений скорости кровотока.

Технической проблемой является измерение абсолютного значения скорости крови в сосудах поджелудочной железы в процессе хирургического вмешательства в условиях развития панкреатита в целях изучения патогенеза и методов лечения острого панкреатита.

Технический результат заключается в расширении функциональных возможностей способа и повышении точности мониторинга нарушений микрогемодинамики.

Указанная техническая проблема решается тем, что в способе мониторинга нарушений микрогемодинамики в поджелудочной железе лабораторных крыс, заключающемся в том, что записывают R серий из Q спекл-изображений исследуемой области в поджелудочной железе, причем каждую серию спекл-изображений r записывают в течение не более одной секунды, для каждого спекл-изображения q определяют среднюю интенсивность рассеянного света и среднеквадратичное значение флуктуации интенсивности рассеянного света, осуществляют усреднение и по Q спекл-изображениям в одной серии, для каждой серии спекл-изображений r вычисляют значение контраста , сравнивают значение контраста Kr для разных серий спекл-изображений и при наличии разницы между значениями делают вывод о качественном нарушении микрогемодинамики, согласно решению предварительно записывают калибровочную серию из Q спекл-изображений фантома, моделирующего поток крови с заданной скоростью υ, для каждого спекл-изображения q определяют среднюю интенсивность рассеянного света и среднеквадратичное значение флуктуации интенсивности рассеянного света, осуществляют усреднение и по Q спекл-изображениям в калибровочной серии, для калибровочной серии спекл-изображений вычисляют значение контраста , из зависимости K(τc) вычисляют τc – время корреляции, из зависимости υ(τc, a) вычисляют коэффициент a, для каждой серий из Q спекл-изображений исследуемой области вычисляют абсолютное значение скорости кровотока υq (a, Kr), сравнивая υq для разных серий спекл-изображений, делают вывод о количественном нарушении микрогемодинамики.

Предварительно на поджелудочную железу наносят биосовместимый просветляющий агент ОмнипакТМ300.

Изобретение поясняется чертежами, на фиг. 1 изображена схема реализации способа на лабораторной крысе, на фиг. 2 представлен анализ скорости кровотока методом спекл-контрастной визуализации при нанесении биосовместимого просветляющего раствора Йогексола (ОмнипакТМ300) в течение 10 минут воздействия.

Позициями на чертежах обозначены:

1 - He-Ne лазер ГН-5П, длина волны — 633 нм;

2 - объектив 10х;

3 - тубус микроскопа с микрообъективом (Ломо, 10×);

4 - детектор (КМОП камера Basler A602f);

5 - исследуемый объект;

6 - источник белого света.

Сущность изобретения заключается в следующем.

Устройство, реализующее способ, состоит из источника когерентного излучения, источника белого света 6 и детектора 4, соединенного с компьютером. На фиг. 1 представлено реализующее устройство, где исследуемый объект 5 освещают когерентным источником света 1 (освещение лазером длинами волн 633 нм, 780 нм) для спекл-визуализаци с дополнительным использованием объектива 2 для расширения лазерного пучка. Для микроскопического анализа используют источник белого света 6 или набор светодиодов длиной волны 517 нм. Далее спекл-модулированные изображения поверхности анализируемого участка регистрируют монохромной КМОП-камерой 4 (Basler a602f, число пикселей в матрице 656×491, размер пикселя 9.9×9.9 мкм; 8 бит/пиксель), оснащенной микрообъективом 3. В случае осложнений в доставке лазерного излучения к исследуемой области, возможно, произвести изменение конфигурации устройства путем использования волоконного световода.

В способе проводят количественный анализ изменений микрогемодинамики поджелудочной железы методом спекл-контрастной визуализации, позволяющем в режиме реального времени визуализировать изменения кровотока. Для анализа структурного состояния биологической ткани используют метод микроскопии. На поджелудочную железу в области визуализации кровотока наносят биосовместимый просветляющий агент ОмнипакТМ300, не влияющий на микрогемодинамику. Концентрацию, объем и место аппликации агента выбирают таким образом, чтобы улучшалось качество визуализации сосудов, и была возможность количественной оценки скорости кровотока в сосудах на большей глубине. Данные записывают с помощью программы для проведения измерений и расчета контраста в среде LabVIEW 8.5 (NationalInstruments, США), позволяющей в режиме реального времени с частотой до 100 кадров в секунду регистрировать распределения интенсивности спекл-поля и рассчитывать по указанной оператором области средний контраст или пространственное распределение контраста с параллельной визуализацией.

Способ осуществляется следующим образом.

Предварительно на поджелудочную железу наносят биосовместимый просветляющий раствор Йогексола (ОмнипакТМ300). Данный агент не вызывает каких либо статистически значимых изменений микрогемодинамики, результаты данных исследований представлены на фиг. 2. Записывают R серий из Q спекл-изображений исследуемой области в поджелудочной железе, причем каждую серию спекл-изображений записывают в течение не более одной секунды. Для каждого спекл-изображения q определяют среднюю интенсивность рассеянного света и среднеквадратичное значение флуктуации интенсивности рассеянного света.

, (1)

, (2)

где М и N - количество пикселей в строках и столбцах анализируемой области кадра, соответственно; - это яркость (m,n) пикселей, q – спекл-изображения, q=[1;Q]. Осуществляют усреднение и по Q спекл-изображениям в одной серии, для каждой серии спекл-изображений r вычисляют значение контраста:

(3)

Данную процедуру выполняют с помощью программы, созданной в среде LabVIEW 8.5 (NationalInstruments, США). Данная программа позволяет в режиме реального времени с частотой до 100 кадров в секунду регистрировать распределения интенсивности спекл-поля и рассчитывать по формуле (1), по указанной оператором области средний контраст или пространственное распределение контраста с параллельной визуализацией, проводят анализ изменений микрогемодинамики, путем сравнения значения контраста Kr для разных серий спекл-изображений и при наличии разницы между значениями делают вывод о качественном нарушении микрогемодинамики.

Для получения количественных параметров проводят калибровку устройства, с помощью фантома моделирующего поток крови. Например, фантом может представлять собой трубку, по которой с контролируемой скоростью в пределах от 0 до 3 мм/сек пропускают кровь. Скорость потока регулируют использованием дозатора лекарственных веществ MLWLineomat, Германия.

Предварительно записывают калибровочную серию из Q спекл-изображений фантома, моделирующего поток крови с заданной скоростью υ. Для каждого спекл-изображения q определяют среднюю интенсивность рассеянного света и среднеквадратичное значение флуктуации интенсивности рассеянного света. Осуществляют усреднение и по Q спекл-изображениям в калибровочной серии, для калибровочной серии спекл-изображений вычисляют значение контраста .

Пользуясь формулой (4) зависимости K(τс) от времени корреляции τс для направленного движения частиц (Sean J. Kirkpatrick, “Laser speckle contrast imaging is sensitive to advective flux,” J.Biomed. Opt. 21(7), 076001 (2016))

(4)

вычисляют τ – время корреляции,

Из зависимости υ(τc, a), формулы (5) для расчета характерной скорости потока

(5)

вычисляют коэффициент a, который зависит от рассеивающих свойств фантома, направленности движения. Зная значения данного коэффициента, далее для каждой из серий из Q спекл-изображений исследуемой области вычисляют скорость кровотока υq (a, Kr). Сравнивая υq для разных серий спекл-изображений, делают вывод о количественном нарушении микрогемодинамики.

Для оценки патогенеза развития панкреатита и оценки методов лечения панкреатита используют модель ишемии-реперфузии, путем моделирования обратимого нарушения кровотока в сосудах поджелудочной железы. Выбор данной модели связан с тем, что центральная патогенетическая роль в прогрессировании панкреатита, с последствиями в виде тканевой гипоксии и (или) аноксии, принадлежит микроциркуляторным нарушениям.

Моделирование ишемии–реперфзии осуществляют пережатием магистральных сосудов. Эксперимент по оценке кровотока с использованием модели ишемии реперфузии проводят следующим путем: для каждого животного (лабораторной крысы) производят срединную лапаротомию. Наружу выводят органокомплекс, после чего поджелудочную железу помещают на манипуляционный столик. Через перфорации в столике над сосудистым пучком, кровоснабжающим исследуемую область, накладывают лигатуру капроновой нитью. Животное помещают под оптическую систему для визуализации исследуемой области и регистрации кровотока. Пережатие сосуда выполняют с параллельной регистрацией кровотока. Время пережатия варьируют для различных групп животных. После пережатия вновь производят регистрацию кровотока. После завершения записи данных эксперимент завершают и органокомплекс помещают в брюшную полость. Послеоперационную рану зашивают. Спустя определенное время, проводят повторный эксперимент на том же самом животном для анализа структурных изменений и изменений микрогемодинамики поджелудочной железы. Также исследования проводят с применением медикаментозных препаратов, которые используют в медицинской практике для лечения острого панкреатита и с использованием биосовместимых агентов, оказывающих контролируемое влияние на микрогемодинамику (растворы фруктозы, глюкозы, глицерина).

Способ мониторинга нарушений микрогемодинамики в поджелудочной железе лабораторных крыс включает в себя совмещение метода оценки контраста спекл-изображений и микроскопии, это позволяет получить высокоэффективный инструмент для определения параметров микрогемодинамики. Также важным отличием является то, что проводят количественный анализ микрогемодинамики и дополнительно используют метод оптического просветления, снижающий рассеяние биотканей, тем самым улучшающий визуализацию кровотока без влияния на скорость кровотока (растворы Йогексола), или с контролируемым влиянием на микрогемодинамику (растворы фруктозы, глюкозы, глицерина).

Похожие патенты RU2648037C1

название год авторы номер документа
УСТРОЙСТВО И СПОСОБ ИЗМЕРЕНИЯ КРОВЯНОГО ДАВЛЕНИЯ 2016
  • Виленский Максим Алексеевич
  • Попов Михаил Вячеславович
  • Клецов Андрей Владимирович
  • Чо Чжэгол
  • Зимняков Дмитрий Александрович
  • Ювченко Сергей Алексеевич
RU2648029C2
СПОСОБ БЕСКОНТАКТНОГО ЦВЕТОВОГО ДОПЛЕРОВСКОГО КАРТИРОВАНИЯ КРОВОТОКА В СОСУДАХ СЕТЧАТКИ ГЛАЗА И ЗРИТЕЛЬНОГО НЕРВА 2020
  • Потлов Антон Юрьевич
  • Фролов Сергей Владимирович
RU2763677C1
Устройство для метрологического контроля состояния приборов оптической флоуметрии 2021
  • Рогаткин Дмитрий Алексеевич
  • Лапитан Денис Григорьевич
RU2777514C1
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ МИКРОЦИРКУЛЯЦИИ КРОВИ 2002
  • Ульянов С.С.
  • Лепилин А.В.
  • Лебедева Н.Г.
  • Хариш Н.А.
RU2243567C2
СПОСОБ ИНТРАОПЕРАЦИОННОЙ ВИЗУАЛИЗАЦИИ ПАТОЛОГИЧЕСКИХ ОЧАГОВ 2012
  • Звягин Андрей Васильевич
  • Гуллер Анна Евгеньевна
  • Аннемари Надорт
  • Деев Сергей Михайлович
RU2544094C2
СПОСОБ ОБНАРУЖЕНИЯ АБЕРРАЦИЙ ПРИ УЛЬТРАЗВУКОВОМ ИССЛЕДОВАНИИ 2022
  • Леонов Денис Владимирович
  • Кульберг Николай Сергеевич
  • Яковлева Татьяна Викторовна
  • Соловьёва Полина Дмитриевна
RU2788389C1
СПОСОБ ИССЛЕДОВАНИЯ МИКРООБЪЕКТОВ 1998
  • Яскевич Г.Ф.
RU2154815C2
Способ ангиографии в эндоскопической оптической когерентной томографии 2018
  • Фролов Сергей Владимирович
  • Потлов Антон Юрьевич
  • Фролова Татьяна Анатольевна
RU2692225C1
Способ измерения высоты шероховатости 1984
  • Борейко Владимир Михайлович
  • Вылегжанин Борис Владимирович
  • Заводчиков Георгий Иванович
  • Поплавский Анатолий Афанасьевич
  • Таганов Олег Константинович
  • Таганова Вера Андреевна
  • Яркин Мореслав Викторович
SU1332204A1
СПОСОБ КОГЕРЕНТНОЙ РЕНТГЕНОВСКОЙ ФАЗОВОЙ МИКРОСКОПИИ 2010
  • Акчурин Гариф Газизович
RU2426103C1

Иллюстрации к изобретению RU 2 648 037 C1

Реферат патента 2018 года СПОСОБ МОНИТОРИНГА НАРУШЕНИЙ МИКРОГЕМОДИНАМИКИ В ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЕ ЛАБОРАТОРНЫХ КРЫС

Изобретение относится к медицине, а именно к мониторингу микрогемодинамики в поджелудочной железе в процессе хирургического вмешательства с помощью технологии спекл-контрастной визуализации. Способ содержит этапы, на которых: записывают R серий из Q спекл-изображений исследуемой области в поджелудочной железе, причем каждую серию спекл-изображений r записывают в течение не более одной секунды. Для каждого спекл-изображения q определяют среднюю интенсивность рассеянного света и среднеквадратичное значение флуктуации интенсивности рассеянного света. Осуществляют усреднение и по Q спекл-изображениям в одной серии. Для каждой серии спекл-изображений r вычисляют значение контраста . Сравнивают значение контраста Kr для разных серий спекл-изображений и при наличии разницы между значениями делают вывод о качественном нарушении микрогемодинамики. Также предварительно записывают калибровочную серию из Q спекл-изображений фантома, моделирующего поток крови с заданной скоростью υ. Для каждого спекл-изображения q определяют среднюю интенсивность рассеянного света и среднеквадратичное значение флуктуации интенсивности рассеянного света. Осуществляют усреднение и по Q спекл-изображениям в калибровочной серии. Для калибровочной серии спекл-изображений вычисляют значение контраста . Из зависимости K(τc) вычисляют τc – время корреляции. Из зависимости υ(τc, a) вычисляют коэффициент a. Для каждой серии из Q спекл-изображений исследуемой области вычисляют абсолютное значение скорости кровотока υq (a, Kr). Сравнивая υq для разных серий спекл-изображений, делают вывод о количественном нарушении микрогемодинамики. Изобретение позволяет расширить функциональные возможности и повысить точность мониторинга нарушений микрогемодинамики. 2 ил.

Формула изобретения RU 2 648 037 C1

1. Способ мониторинга нарушений микрогемодинамики в поджелудочной железе лабораторных крыс, заключающийся в том, что записывают R серий из Q спекл-изображений исследуемой области в поджелудочной железе, причем каждую серию спекл-изображений r записывают в течение не более одной секунды, для каждого спекл-изображения q определяют среднюю интенсивность рассеянного света и среднеквадратичное значение флуктуации интенсивности рассеянного света, осуществляют усреднение и по Q спекл-изображениям в одной серии, для каждой серии спекл-изображений r вычисляют значение контраста , сравнивают значение контраста Kr для разных серий спекл-изображений и при наличии разницы между значениями делают вывод о качественном нарушении микрогемодинамики, отличающийся тем, что предварительно записывают калибровочную серию из Q спекл-изображений фантома, моделирующего поток крови с заданной скоростью υ, для каждого спекл-изображения q определяют среднюю интенсивность рассеянного света и среднеквадратичное значение флуктуации интенсивности рассеянного света, осуществляют усреднение и по Q спекл-изображениям в калибровочной серии, для калибровочной серии спекл-изображений вычисляют значение контраста , из зависимости K(τc) вычисляют τc – время корреляции, из зависимости υ(τc, a) вычисляют коэффициент a, для каждой серий из Q спекл-изображений исследуемой области вычисляют абсолютное значение скорости кровотока υq (a, Kr), сравнивая υq для разных серий спекл-изображений, делают вывод о количественном нарушении микрогемодинамики.

2. Способ по п.1, отличающийся тем, что предварительно на поджелудочную железу наносят биосовместимый просветляющий агент ОмнипакТМ300.

Документы, цитированные в отчете о поиске Патент 2018 года RU2648037C1

АЛЕКСАНДРОВ Д.А
и др., Динамика показателей лазерной спекл-визуализации кровотока в тканях при временной частичной локальной ишемии поджелудочной железы у голодных, сытых и алкоголизированных крыс, Саратовский научно-медицинский журнал, Том 12, N2, 2016, сс
Светоэлектрический измеритель длин и площадей 1919
  • Разумников А.Г.
SU106A1
KOSAR KHAKSARI et al, Laser speckle contrast imaging is sensitive to advective flux, J
Biomed
Opt., N 21(7), 2016, pp.1-8
ТИМОШИНА П.А
Мониторинг микроциркуляции крови методом спекл-контрастной визуализации в исследованиях модельных патологий на животных, Диссертация на соискание ученой степени кандитата физико-математических наук, 2016, сс
Способ запрессовки не выдержавших гидравлической пробы отливок 1923
  • Лучинский Д.Д.
SU51A1
АГАФОНОВ Д.Н., Исследование параметров микроциркуляции крови в области ногтевого ложа с использованием метода лазерной спекл-визуализации, Известия Саратовского университета
Новая серия
Серия Физика, 2011, сс
Паровоз для отопления неспекающейся каменноугольной мелочью 1916
  • Драго С.И.
SU14A1

RU 2 648 037 C1

Авторы

Тимошина Полина Александровна

Тучин Валерий Викторович

Александров Денис Анатольевич

Даты

2018-03-21Публикация

2017-03-29Подача