Тепловая микросистема на полупроводниковой основе Российский патент 2018 года по МПК G01P5/10 G01K13/02 

Описание патента на изобретение RU2648306C1

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры потока неоднородных, химически агрессивных и абразивосодержащих газов.

Известны термоанемометры (ТА), конструкция которых включает полупроводниковый термочувствительный элемент (ТЧЭ) на основе терморезистора, при этом нагрев ТЧЭ осуществляется с помощью постоянного или переменного электрического тока [Кремлевский П.П. Расходомеры и счетчики количества веществ: Справочник: Кн. 2 / Под общ. Ред. Е.А. Шорникова. - 5-е изд., перераб. и доп. - СПб.: Политехника, 2004].

Недостатками таких термоанемометров является сильная зависимость греющего тока от электрического сопротивления ТЧЭи, как следствие, невозможность использования ТЧЭ с высокими значениями электрического сопротивления, а также невозможность измерения химически агрессивных и абразивосодержащих газов ввиду использования традиционных материалов.

Известны термоанемометры, содержащие несколько терморезистивных элементов для устранения температурной зависимости (см. RU 2450277, G01P 5/12, G01K 13/02, 28.10.2009).

Недостатками таких термоанемометров является нелинейность температурной зависимости, вследствие чего возрастает погрешность измерения скорости потока. Кроме того, наличие большого числа элементов усложняет конструкцию.

Наиболее близким по техническому решению является принятый за прототип микроизлучатель (см. RU 2466361, G01J 5/00, 24.06.2011), состоящий из излучающей площадки, держателя и отверстия, нагрев которого осуществляется за счет процессов теплопередачи (конвекция + тепловая радиация) из окружающей среды. Микроизлучатель в рамках телевизионного метода позволяет измерять температуру газового потока.

Главным недостатком конструкции такого микроизлучателя является невозможность измерения скорости газового потока по принципу электрического термоанемометра. Кроме того, телевизионный метод измерения температуры газового потока с помощью микроизлучателя обладает большой погрешностью.

Задачей предлагаемого технического решения является повышение универсальности устройства на базе конструкции микроизлучателя.

Технический результат - предлагаемая микросистема на базе конструкции микроизлучателя позволяет измерять и регистрировать скорость и температуру газовых потоков.

Для достижения указанного выше технического результата предложена конструкция тепловой микросистемы, выполненная из полупроводникового материала и состоящая из площадки круглой формы и ножки, содержащей по крайней мере одно сквозное отверстие, причем микросистема в пределах периметра круглой площадки с двух сторон содержит электропроводящий слой, в состав которого входят атомы Ni, Au, Ta, W, Al, Ti, Sb, Nb, Pt, Cr, Hf, Mo, Zr с внешними электрическими выводами и охранное кольцо в виде мезопланарной структуры. Поверхность ножки микросистемы также содержит электропроводящий слой, в состав которого входят атомы Ni, Au, Ta, W, Al, Ti, Sb, Nb, Pt, Cr, Hf, Mo, Zr с внешними электрическими выводами и охранное кольцо в виде мезопланарной структуры.

Как и в прототипе, теплообмен поверхности микросистемы с окружающей средой осуществляется за счет процессов конвекции и теплового излучения.

Предлагаемое устройство иллюстрируется следующими изображениями.

На фиг. 1 изображен вид спереди конструкции тепловой микросистемы.

На фиг. 2 изображена тепловая микросистема, вид сбоку.

Микросистема содержит круглую площадку 1, на поверхности которой с двух сторон находится электропроводящий слой 2, ножку 3, отверстие в ножке 4, электропроводящий слой на ножке 5, внешние выводы 6 в виде контактов А, В и С, несколько охранных колец в виде мезопланарной структуры, расположенных как на круглой площадке, так и на ножке с заданным диаметром 7.

Устройство работает следующим образом.

Одним из известных способов микросистему устанавливают в заданную область исследуемого изотермического газового потока так, чтобы все металлосодержащие области микросистемы находились в исследуемой среде, а саму микросистему ориентируют вдоль набегающего газового потока. При этом газовый поток может содержать пыль, мелкие частицы абразива, иметь химически агрессивный состав. Через контакты А, В пропускают электрический ток заданной величины, который вызывает разогрев терморезистора до определенного значения температуры, образованного круглой площадкой с контактами А, В. Так как часть электрического тока течет через слой материала, а другая часть по поверхности микросистемы, то предусмотрена канавка, наличие которой увеличивает электрическое сопротивление канала, а, следовательно, уменьшает ток утечки между контактами А и В. Разогретый терморезистор омывает набегающий газовый поток, вследствие чего отводит часть тепла от терморезистора. Падение напряжения, возникающее между контактами А, В, пропорционально скорости газового потока и измеряется известным способом [Кремлевский П.П. Расходомеры и счетчики количества веществ: Справочник: Кн. 2 / Под общ. Ред. Е.А. Шорникова. - 5-е изд., перераб. и доп. - СПб.: Политехника, 2004]. Так же как и в прототипе, сквозное отверстие блокирует отвод тепла в ножку, поэтому ножка имеет температуру равную температуре газового потока Тножкипотока. Для повышения точности измерения скорости газового потока задаем величину тока при помощи контроллера, значение которого будет определяться температурой потока Тпотока, которую мы измеряем контактами В, С. Значение электрического тока задается при значении температуры среды [Корляков А.В., Лучинин В.В., Никитин И.В. Применение SiC-микро-нагревательных систем в микросистемной технике // Микросистемная техника. 2000, №2, с. 27-31.]. При этом необходимо постоянно поддерживать разность температур, температура термоанемометра должна быть больше температуры газового потока.

Пример 1

В качестве примера известным способом была создана микросистема на основе монокристаллического карбида кремния политипа 6Н с концентрацией ND-NA≅3⋅1018 см-3. Диаметр круглой площадки 8 мм, длина ножки 10 мм, ширина 2 мм. На поверхности модели были изготовлены канавки на круглой площадке по периметру и на ножке глубиной 1 мкм и шириной 1,5 мкм. На заготовку известным способом микроэлектронных технологий нанесли слой никеля толщиной 1,5 мкм. В области ножки известным способом было создано сквозное отверстие диаметром 1,2 мм. В качестве внешних выводов использовалась золотая проволока. Микросистема, как и в прототипе, крепилась на держателе известным способом. Микросистема помещалась в газовый поток со скоростью 10 м/с и температурой 373 K. Через термоанемометр, посредством контактов А, В пропускали от источника электрический ток 0,3 А.

Пример 2

В качестве примера известным способом была создана микросистема на основе монокристаллического кремния. Диаметр круглой площадки 8 мм, длина ножки 10 мм, ширина 2 мм. На поверхности модели были изготовлены канавки на круглой площадке по периметру и на ножке

глубиной 1 мкм и шириной 1,5 мкм. На заготовку известным способом микроэлектронных технологий нанесли слой алюминия прямоугольной формы толщиной 1,5 мкм. В области ножки известным способом было создано сквозное отверстие диаметром 1,2 мм. В качестве внешних выводов использовалась золотая проволока. Микросистема, как и в прототипе, крепилась на держателе известным способом. Микросистема помещалась в газовый поток со скоростью 10 м/с и температурой 333 K. Через термоанемометр, посредством контактов А, В пропускали от источника электрический ток 0,1 А.

Предлагаемое изобретение позволяет получить следующий технический результат: микросистема позволяет измерять и регистрировать скорость и температуру газовых потоков за счет примененной и усовершенствованной конструкции прототипа.

Похожие патенты RU2648306C1

название год авторы номер документа
Тепловая микросистема с фотонным нагревом 2019
  • Евстигнеев Даниил Алексеевич
  • Карачинов Владимир Александрович
  • Варшавский Антон Сергеевич
  • Ионов Александр Сергеевич
  • Карачинов Дмитрий Владимирович
RU2700886C1
УНИВЕРСАЛЬНАЯ МИКРОСИСТЕМА НА ОСНОВЕ КАРБИДА КРЕМНИЯ 2016
  • Карачинов Владимир Александрович
  • Карачинов Дмитрий Владимирович
  • Зверев Кирилл Анатольевич
RU2649071C1
КАТАЛИЗАТОР ДЛЯ ОКИСЛЕНИЯ ЭТАНА И/ИЛИ ЭТИЛЕНА В УКСУСНУЮ КИСЛОТУ (ВАРИАНТЫ), СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ 1999
  • Эллис Брайан
  • Кук Джон
  • Джонс Майкл Дейвид
  • Китчен Саймон Джеймс
  • Хауард Филлип
RU2208480C2
СЦИНТИЛЛЯЦИОННОЕ ВЕЩЕСТВО (ВАРИАНТЫ) И СЦИНТИЛЛЯЦИОННЫЙ ВОЛНОВОДНЫЙ ЭЛЕМЕНТ 1998
  • Заварцев Ю.Д.(Ru)
  • Загуменный А.И.(Ru)
  • Студеникин П.А.(Ru)
RU2157552C2
ТЕРМОАНЕМОМЕТР И СПОСОБ НАГРЕВА ЕГО ТЕРМОРЕЗИСТОРНОЙ СТРУКТУРЫ 2013
  • Манухин Виталий Александрович
  • Карачинов Владимир Александрович
  • Карачинов Дмитрий Владимирович
RU2528572C1
СПЕЧЕННЫЙ МАГНИТ R-FE-B И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2016
  • Хирота, Коити
  • Нагата, Хироаки
  • Куме, Тецуя
  • Накамура, Хадзиме
RU2704989C2
СПОСОБ ИЗГОТОВЛЕНИЯ УПОРЯДОЧЕННЫХ НАНОСТРУКТУР 2011
  • Гаврилов Сергей Александрович
  • Громов Дмитрий Геннадьевич
  • Дубков Сергей Владимирович
  • Миронов Андрей Евгеньевич
  • Шулятьев Алексей Сергеевич
RU2462785C1
СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИЗАТОРА 2011
  • Купланд Дункан Рой
RU2774626C2
МИКРОИЗЛУЧАТЕЛЬ 2011
  • Карачинов Владимир Александрович
  • Карачинов Дмитрий Владимирович
RU2466361C1
УСТРОЙСТВО ДЛЯ ИНДУКЦИОННОЙ СВАРКИ И СПОСОБ ИЗГОТОВЛЕНИЯ УСТРОЙСТВА ДЛЯ ИНДУКЦИОННОЙ СВАРКИ 2014
  • Александерссон Мартин
  • Израелссон Карл
  • Сандберг Дэниел
  • Йоханссон Карл-Аксель
  • Десальво Винченцо
RU2671008C2

Иллюстрации к изобретению RU 2 648 306 C1

Реферат патента 2018 года Тепловая микросистема на полупроводниковой основе

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры потока неоднородных, химически агрессивных и абразивосодержащих газов. Предлагается устройство в виде тепловой микросистемы, выполненной из полупроводникового материала и состоящей из площадки круглой формы и конструктивно связанной с ней ножки, содержащей по крайней мере одно сквозное отверстие. Поверхность круглой площадки с двух сторон в пределах периметра содержит электропроводящий слой, в состав которого входят атомы Ni, Au, Ta, W, Al, Ti, Sb, Nb, Pt, Cr, Hf, Mo, Zr с внешними электрическими выводами и охранное кольцо в виде мезопланарной структуры. Также на ножке в пределах периметра содержится электропроводящий слой, в состав которого входят атомы Ni, Au, Ta, W, Al, Ti, Sb, Nb, Pt, Cr, Hf, Mo, Zr с внешними электрическими выводами и охранное кольцо в виде мезопланарной структуры. Кроме того, тепловая микросистема может содержать элементы электрической коммутации. Технический результат - повышение точности и достоверности получаемых результатов. 2 ил.

Формула изобретения RU 2 648 306 C1

Тепловая микросистема на полупроводниковой основе, состоящая из площадки круглой формы и ножки, содержащей, по крайней мере одно сквозное отверстие, отличающаяся тем, что круглая площадка в пределах периметра с двух сторон содержит электропроводящий слой, в состав которого входят атомы Ni, Au, Ta, W, Al, Ti, Sb, Nb, Pt, Cr, Hf, Mo, Zr, с внешними электрическими выводами и охранное кольцо в виде мезопланарной структуры, поверхность ножки микросистемы также содержит электропроводящий слой, в состав которого входят атомы Ni, Au, Ta, W, Al, Ti, Sb, Nb, Pt, Cr, Hf, Mo, Zr, с внешними электрическими выводами и охранное кольцо в виде мезопланарной структуры.

Документы, цитированные в отчете о поиске Патент 2018 года RU2648306C1

МИКРОИЗЛУЧАТЕЛЬ 2011
  • Карачинов Владимир Александрович
  • Карачинов Дмитрий Владимирович
RU2466361C1
US 5277496 A, 11.01.1994
КАРАЧИНОВ В.А., КАРАЧИНОВ Д.В., КАЗАКОВА М.В
и др., "ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНЫХ ПОЛЕЙ ИЗЛУЧАЮЩИХ СТРУКТУР НА ОСНОВЕ КАРБИДА ТЕЛЕВИЗИОННЫМ МЕТОДОМ", ВЕСТНИК НОВГОРОДСКОГО УНИВЕРСИТЕТА, НОМЕР 4(95) 2016, С.23-25
КАРАЧИНОВ В.А., КАРАЧИНОВ Д.В., ИЛЬИН С.В., " ПИРОМЕТРИЧЕСКИЕ ЗОНДЫ НА ОСНОВЕ КРИСТАЛЛОВ КАРБИЛА КРЕМНИЯ", ПИМА В ЖТФ, 2005, ТОМ 31, ВЫП.11, С.1-3
US 5670784 A, 23.09.1997
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ГАЗА 2010
  • Карачинов Владимир Александрович
  • Карачинов Дмитрий Владимирович
RU2466362C2

RU 2 648 306 C1

Авторы

Евстигнеев Даниил Алексеевич

Карачинов Владимир Александрович

Бондарев Дмитрий Андреевич

Карачинов Дмитрий Владимирович

Даты

2018-03-23Публикация

2016-11-22Подача