ПРОПИТОЧНАЯ СМОЛА ДЛЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО КОЖУХА, ЭЛЕКТРОИЗОЛЯЦИОННЫЙ КОЖУХ И СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО КОЖУХА Российский патент 2018 года по МПК H01B3/40 

Описание патента на изобретение RU2648981C2

Изобретение относится к пропиточной смоле для электроизоляционного кожуха, электроизоляционному кожуху и способу получения электроизоляционного кожуха.

Электрические машины, как, например, двигатели и генераторы, включают в себя электрические провода, главную изоляцию и пакет железа статора. Задачей главной изоляции является изолировать по току провода друг от друга, от пакета железа статора и от окружения. При работе электрической машины из-за частичных электрических разрядов могут возникать искры, которые могут образовывать так называемые "дендритные" каналы в главной изоляции. Образование дендритных каналов может привести к электрическому пробою главной изоляции. Барьер от частичных разрядов достигается применением в главной изоляции слюды, которая имеет высокую стойкость к частичному разряду. Слюда используется в виде чешуйчатых слюдяных частиц, обычно с размером частиц от нескольких сотен микрон до нескольких миллиметров, причем из слюдяных частиц изготавливают слюдяную бумагу. Для повышения прочности и для улучшения технологических свойств применяется электроизоляционная лента, которая помимо слюдяной бумаги содержит несущую структуру.

Для получения главной изоляции электроизоляционную ленту обматывают вокруг провода. После этого электроизоляционную ленту пропитывают синтетической смолой и затем смолу отверждают. Известно, что для повышения стойкости к частичному разряду главной изоляции применяются наночастицы, которые перед пропиткой диспергируют в синтетической смоле. Однако в присутствии частиц сокращается срок службы синтетической смолы. Это проявляется, в частности, в продолжающейся полимеризации синтетической смолы, что ведет к повышению вязкости смолы и, тем самым, затрудняет пропитку электроизоляционной ленты.

Целью изобретения является разработать пропиточную смолу для электроизоляционного кожуха, причем как пропиточная смола, так и электроизоляционный кожух должны иметь длительный срок службы.

Предлагаемая изобретением пропиточная смола для электроизоляционного кожуха содержит базовую смолу, наполнитель, содержащий наночастицы, и активный разбавитель, способный к радикальной полимеризации. Активный разбавитель имеет более низкую вязкость, чем базовая смола, благодаря чему в пропиточной смоле согласно изобретению можно использовать более высокую массовую долю наночастиц, чем в сопоставимой пропиточной смоле с равной вязкостью, но без активного разбавителя. Из-за присутствия активного разбавителя уменьшается концентрация базовой смолы в пропиточной смоле, вследствие чего снижается скорость полимеризации базовой смолы и, таким образом, выгодным образом увеличивается ее срок годности.

Отношение m(активный разбавитель)/(m(базовая смола)+m(активный разбавитель)) предпочтительно составляет от 0,3 до 0,7, особенно предпочтительно от 0,4 до 0,6, где m(базовая смола) и m(активный разбавитель) означают соответственно массу базовой смолы и активного разбавителя в пропиточной смоле. При таком отношении можно выгодным образом достичь особенно высокого массового содержания наночастиц в пропиточной смоле при одновременно высокой прочности отвержденной пропиточной смолы.

Активный разбавитель предпочтительно является стиролом, винилтолуолом, в частности о-винилтолуолом, м-винилтолуолом и/или п-винилтолуолом, алкилакрилатом и/или алкандиолакрилатом, в частности гександиолдиакрилатом, в частности 1,6-гександиолдиакрилатом. Эти соединения имеют особенно низкую вязкость, что предпочтительно; так, например, вязкость стирола составляет 0,7-0,8 мПа*с, то есть она примерно на 20% ниже, чем вязкость воды.

Предпочтительно, чтобы базовая смола была эпоксидной смолой, полиэфиримидом, в частности ненасыщенным полиэфиримидом, сложным полиэфиром, в частности ненасыщенным сложным полиэфиром, и/или полиуретаном. Эпоксидная смола предпочтительно содержит диглицидиловый эфир бисфенола A, диглицидиловый эфир бисфенола F, фенольные новолачные смолы, алифатические и/или циклоалифатические эпоксиды. Кроме того, предпочтительно, чтобы эпоксидная смола содержала циклической ангидрид карбоновой кислоты, в частности малеиновый ангидрид, фталевый ангидрид, метилгексагидрофталевый ангидрид и/или гексагидрофталевый ангидрид. Кроме того, предпочтительно, чтобы эпоксидная смола содержала амин в качестве отвердителя. Все вышеуказанные базовые смолы не полимеризуются по радикальному механизму и не реагируют с активным разбавителем, способным к радикальной полимеризации. Так как в присутствии активного разбавителя уменьшается концентрация базовой смолы в пропиточной смоле, снижается скорость полимеризации базовой смолы. В результате пропиточная смола перед пропиткой имеет особенно высокий срок хранения, что выгодно.

Предпочтительно, чтобы пропиточная смола содержала сшивающий агент для сшивки базовой смолы и активного разбавителя, в частности,

бицикло[2.2.1]гепт-5-ен-2,3-дикарбоксиангидрид,

1-метилбицикло[2.2.1]гепт-5-ен-2,3-дикарбоксиангидрид,

2-метилбицикло[2.2.1]гепт-5-ен-2,3-дикарбоксиангидрид,

5-метилбицикло[2.2.1]гепт-5-ен-2,3-дикарбоксиангидрид и/или

7-метилбицикло[2.2.1]гепт-5-ен-2,3-дикарбоксиангидрид

в качестве сшивающего агента. При отверждении пропиточной смолы алкеновая группа сшивающего агента в результате реакции роста цепи активного разбавителя по радикальному механизму встраивается в полимерную сетку активного разбавителя. Одновременно ангидридная группа сшивающего агента встраивается в полимерную сетку базовой смолы. Благодаря сшивающему агенту получается высокая прочность отвержденной пропиточной смолы, что выгодно.

Предпочтительно, чтобы пропиточная смола содержала второй наполнитель с частицами, средний диаметр которых составляет от примерно 100 нм до примерно 100 мкм. Наночастицы и/или частицы второго наполнителя предпочтительно являются неорганическими частицами, которые содержат, в частности, оксид алюминия, гидроксид алюминия, диоксид кремния, диоксид титана, оксид редкоземельного металла, оксид щелочного металла, нитрид металла, и/или слоистые силикаты, в частности эксфолиированные или частично эксфолиированные слоистые силикаты. Наночастицы могут быть получены способом in-situ или способом пламенного пиролиза. Слоистые силикаты могут иметь как природное, так и синтетическое происхождение. Вещества, указанные для частиц, не ускоряют полимеризацию активного разбавителя, так что пропиточная смола выгодным образом имеет длительный срок службы. Средний диаметр наночастиц предпочтительно составляет от примерно 1 нм до примерно 100 нм. В результате силанизации поверхности частиц путем реакции частиц с алкилаклкосисиланами, в частности метилтриметоксисиланом, диметилдиметоксисиланом и/или триметилметоксисиланом, поверхности частиц можно придать органофильные свойства, чтобы частицы предпочтительно лучше смешивались со смесью ангидрида карбоновой кислоты и оксирана и меньше ускоряли полимеризацию базовой смолы.

Кроме того, предпочтительно силанизировать поверхности таким образом, чтобы они действовали как сшивающие агенты для сшивки базовой смолы и активного разбавителя.

Электроизоляционный кожух согласно изобретению содержит электроизоляционную ленту, предпочтительно электроизоляционную ленту, содержащую слюду и/или оксид алюминия, которая пропитана пропиточной смолой.

В результате того, что пропиточную смолу согласно изобретению можно получить с более высокой массовой долей наночастиц, чем в сравнимой пропиточной смоле равной вязкости, но без катализатора, можно также получить электроизоляционный кожух с более высокой массовой долей наночастиц, чем сравнимый электроизоляционный кожух со сравнимой пропиточной смолой. Тем самым срок службы электроизоляционного кожуха больше, чем у сравнимого электроизоляционного кожуха. Кроме того, благодаря более высокой массовой доле наночастиц повышается теплопроводность электроизоляционного кожуха, что еще больше увеличивает его срок службы.

Отношение m(пропиточная смола)/(m(пропиточная смола) + m(электроизоляционная лента)) предпочтительно составляет от 0,1 до 0,6, где m(пропиточная смола) и m(электроизоляционная лента) означают соответственно массу пропиточной смолы и электроизоляционной ленты в электроизоляционном кожухе. При этом высоких массовых содержаний пропиточной смолы в электроизоляционном кожухе можно достичь, если электроизоляционную ленту пропитывать способом "Resin-Rich" (технология изготовления изоляции с использованием предварительно пропитанных слюдяных лент). При этом пропиточную смолу вдавливают прессом обратного прессования в электроизоляционную ленту и затем отверждают в прессе обратного прессования путем подвода тепла. Выгодно, что вместе с достижением высокого массового содержания наночастиц в пропиточной смоле можно достичь высокой массовой доли наночастиц, более 50%, в электроизоляционном кожухе.

Предпочтительно, чтобы электроизоляционная лента электроизоляционного кожуха содержала в качестве катализатора реакции ацетилацетонат хрома, нафтенат цинка и/или соединение структурной формулы R1CO2-R2CO2-Zn2+, в которой каждый из R1 и R2 независимо друг от друга означает линейную или разветвленную алкильную группу, в частности C6-алкил, C7-алкил, C8-алкил, C9-алкил или C10-алкил. Катализатор ускоряет полимеризацию базовой смолы и еще до пропитки предпочтительно находится в электроизоляционной ленте, чтобы полимеризация базовой смолы предпочтительно происходила только после пропитки. Соединение структурной формулы R1CO2-R2CO2-Zn2+ предпочтительно можно получить с более высокой чистотой и меньшими колебаниями качества, чем нафтенат цинка, так что отверждение электроизоляционного кожуха выгодным образом может быть осуществлено проще, чем с нафтенатом цинка.

Предпочтительно, чтобы электроизоляционная лента содержала радикальный инициатор, в частности алкилпероксид, алкоилпероксид, арилпероксид, в частности дикумилпероксид, и/или ароилпероксид, в частности 2,5-диметил-2,5-дибензоилпероксигексан и/или дибензоилпероксид. Радикальный инициатор инициирует рост цепи активного разбавителя и предпочтительно уже находится в электроизоляционной ленте перед пропиткой, чтобы полимеризация активного разбавителя предпочтительно происходила только после пропитки. Разложение инициатора и, тем самым, рост цепи можно инициировать, например, подводом тепла или облучением светом, предпочтительно УФ-облучением. Предпочтительно, чтобы пропиточная смола содержала бензохинон в качестве стабилизатора радикальной полимеризации.

Предлагаемый настоящим изобретением способ получения электроизоляционного кожуха включает этапы: a) получение пропиточной смолы путем a1) смешения наполнителя с активным разбавителем; a2) смешения активного разбавителя с базовой смолой; b) пропитка электроизоляционной ленты пропиточной смолой; c) отверждение пропиточной смолы.

Из-за того, что наполнитель сначала смешивают с активным разбавителем, происходит по меньшей мере частичное покрытие поверхности наночастиц активным разбавителем, так что базовая смола по меньшей мере частично экранирована от наночастиц, чтобы наночастицы не так сильно ускоряли полимеризацию базовой смолы. В результате выгодным образом получается длительный срок годности пропиточной смолы несмотря на присутствие наночастиц.

Можно полностью или частично удалять активный разбавитель из пропиточной смолы во время или после пропитки. Допустимо также оставлять активный разбавитель в пропиточной смоле и отверждать вместе с пропиточной смолой.

Способ получения электроизоляционного кожуха предпочтительно содержит этап: a3) установка вязкости пропиточной смолы путем повышения вязкости посредством добавления олигомера базовой смолы или олигомера компонента базовой смолы, в частности олигомера эпоксидного соединения, содержащего по меньшей мере две эпоксидные группы, в частности, олигомера диглицидилового эфира бисфенола A и/или олигомера диглицидилового эфира бисфенола F. Благодаря регулированию вязкости можно с выгодной предотвратить дефекты пропитки и достичь оптимальной массовой доли пропиточной смолы в электроизоляционном кожухе.

Ниже изобретение поясняется подробнее на двух примерах.

В первом примере получают пропиточную смолу, сначала получая смесь стирола (активный разбавитель) и наполнителя, который состоит из частиц диоксида титана со средним диаметром 20 нм. Затем эту смесь смешивают базовой смолой, состоящей из стехиометрической смеси диглицидилового эфира бисфенола A и фталевого ангидрида. При этом отношение m(активный разбавитель)/(m(базовая смола)+m(активный разбавитель)) выбрано равным 0,4, а отношение m(наполнитель)/(m(наполнитель)+m(активный разбавитель)+m(базовая смола)) выбрано равным 0,05-0,6, где m(базовая смола), m(активный разбавитель) и m(наполнитель) означают соответственно массу базовой смолы, активного разбавителя и наполнителя в пропиточной смоле.

Электропровод обматывают электроизоляционной лентой, содержащей слюду. Электроизоляционная лента содержит нафтенат цинка в качестве катализатора полимеризации базовой смолы и дибензоилпероксид в качестве радикального инициатора для активного разбавителя. Электроизоляционную ленту пропитывают пропиточной смолой способом "Resin-Rich" таким образом, чтобы отношение m(пропиточная смола)/(m(пропиточная смола) + m(электроизоляционная лента)) составляло 0,5, где m(пропиточная смола) и m(электроизоляционная лента) означают соответственно массу пропиточной смолы и электроизоляционной ленты. В результате подвода тепла пропиточная смола отверждается, и получают готовый электроизоляционный кожух.

Во втором примере пропиточную смолу получают, готовя сначала смесь винилтолуола (активный разбавитель) и наполнителя, который состоит из частиц оксида алюминия со средним диаметром 15 нм. Затем смесь смешивают с базовой смолой, состоящей из стехиометрической смеси диглицидилового эфира бисфенола F и малеинового ангидрида. При этом отношение m(активный разбавитель)/(m(базовая смола)+m(активный разбавитель)) выбирают равным 0,6, а отношение m(наполнитель)/(m(наполнитель)+m(активный разбавитель)+m(базовая смола)) выбирают равным 0,5, где m(базовая смола), m(активный разбавитель) и m(наполнитель) означают соответственно массу базовой смолы, активного разбавителя и наполнителя в пропиточной смоле. Кроме того, пропиточная смола содержит 1 масс.% метилбицикло[2.2.1]гепт-5-ен-2,3-дикарбокилангидрида в качестве сшивающего агента.

Электропровод обматывают электроизоляционной лентой, содержащей слюду. Электроизоляционная лента содержит неодеканоат цинка в качестве катализатора полимеризации базовой смолы и дикумилпероксид в качестве радикального инициатора для активного разбавителя. Электроизоляционную ленту пропитывают пропиточной смолой способом "Resin-Rich" таким образом, чтобы отношение m(пропиточная смола)/(m(пропиточная смола) + m(электроизоляционная лента)) составляло 0,5, где m(пропиточная смола) и m(электроизоляционная лента) означают соответственно массу пропиточной смолы и электроизоляционной ленты. Путем подвода тепла пропиточную смолу отверждают и получают готовый электроизоляционный кожух.

Хотя изобретение было подробно описано и проиллюстрировано на предпочтительных примерах осуществления, изобретение не ограничено раскрытыми примерами, и специалист может вывести из них другие варианты, не выходя за объем защиты настоящего изобретения.

Похожие патенты RU2648981C2

название год авторы номер документа
КАТАЛИЗАТОР СОПОЛИМЕРИЗАЦИИ, ЭЛЕКТРОИЗОЛЯЦИОННАЯ ЛЕНТА, ЭЛЕКТРОИЗОЛЯЦИОННЫЙ КОЖУХ И УПЛОТНИТЕЛЬ 2014
  • Брокшмидт Марио
  • Польманн Фридхельм
  • Райнер Франк
RU2656340C2
ТВЕРДЫЙ ИЗОЛЯЦИОННЫЙ МАТЕРИАЛ, ПРИМЕНЕНИЕ ТВЕРДОГО ИЗОЛЯЦИОННОГО МАТЕРИАЛА И ЭЛЕКТРИЧЕСКАЯ МАШИНА 2016
  • Хубер, Юрген
  • Ширм, Дитер
  • Ублер, Маттиас
RU2704804C2
ИЗОЛЯЦИОННАЯ СИСТЕМА, ЕЕ ПРИМЕНЕНИЯ, А ТАКЖЕ ЭЛЕКТРИЧЕСКАЯ МАШИНА 2016
  • Хубер Юрген
  • Ширм Дитер
  • Ублер Маттиас
RU2721846C2
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ИЗОЛЯЦИИ, ЭЛЕКТРИЧЕСКАЯ МАШИНА И СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ИЗОЛЯЦИИ 2019
  • Хубер, Юрген
  • Ланг, Штеффен
  • Мюллер, Нильс
  • Ритберг, Игор
  • Юблер, Маттиас
RU2756232C1
КЛЕЙ ДЛЯ ИЗОЛЯЦИОННОЙ ЛЕНТЫ В ИЗОЛЯЦИОННОЙ СИСТЕМЕ И ИЗОЛЯЦИОННАЯ СИСТЕМА 2016
  • Хубер Юрген
  • Олбрих Ирене
  • Ширм Дитер
  • Ублер Маттиас
RU2692730C2
КОМПОЗИЦИЯ ПОРОШКОВОГО ПОКРЫТИЯ ДЛЯ СИСТЕМЫ ИЗОЛЯЦИИ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ, ЭЛЕКТРИЧЕСКАЯ МАШИНА С ТАКОЙ СИСТЕМОЙ ИЗОЛЯЦИИ И СПОСОБ ПОЛУЧЕНИЯ ТАКОЙ СИСТЕМЫ ИЗОЛЯЦИИ 2021
  • Хубер, Юрген
  • Ланг, Штеффен
  • Малейка, Марек
  • Шпонзель, Лиза
RU2826835C1
Модифицированная полимерная композитная арматура 2023
  • Семенов Антон Николаевич
  • Старовойтова Ирина Анатольевна
  • Зыкова Евгения Сергеевна
RU2826026C1
ЭЛЕКТРОИЗОЛЯЦИОННЫЙ ЗАЛИВОЧНО-ПРОПИТОЧНЫЙ КОМПАУНД 2017
  • Шацких Сергей Николаевич
RU2672094C1
ЭЛЕКТРОИЗОЛЯЦИОННЫЙ ЗАЛИВОЧНО-ПРОПИТОЧНЫЙ КОМПАУНД 2022
  • Шацких Сергей Николаевич
RU2787124C1
СМОЛЯНАЯ СМЕСЬ НА ОСНОВЕ ЭПОКСИ(МЕТ)АКРИЛАТНОЙ СМОЛЫ И ЕЕ ПРИМЕНЕНИЕ 2013
  • Гэфке Геральд
  • Бюргель Томас
  • Ляйтнер Михаэль
RU2649437C2

Реферат патента 2018 года ПРОПИТОЧНАЯ СМОЛА ДЛЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО КОЖУХА, ЭЛЕКТРОИЗОЛЯЦИОННЫЙ КОЖУХ И СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО КОЖУХА

Изобретение относится к пропиточной смоле для электроизоляционного кожуха, которая содержит базовую смолу, наполнитель, содержащий наночастицы, и способный к радикальной полимеризации активный разбавитель. Кроме того, изобретение относится к электроизоляционному кожуху с пропиточной смолой, а также к способу получения электроизоляционного кожуха. Согласно изобретению активный разбавитель является стиролом, винилтолуолом, в частности о-винилтолуолом, м-винилтолуолом и/или п-винилтолуолом, алкилакрилатом и/или алкандиолдиакрилатом, в частности гександиолдиакрилатом, в частности 1,6-гександиолдиакрилатом, а базовая смола является эпоксидной смолой, полиэфиримидом, в частности ненасыщенным полиэфиримидом, сложным полиэфиром, в частности ненасыщенным полиэфиром, и/или полиуретаном. Изобретение позволяет увеличить срок годности пропиточной смолы. 3 н. и 4 з.п. ф-лы.

Формула изобретения RU 2 648 981 C2

1. Пропиточная смола для электроизоляционного кожуха, которая содержит базовую смолу, наполнитель, содержащий наночастицы, и способный к радикальной полимеризации активный разбавитель, причем пропиточная смола содержит сшивающий агент для сшивки базовой смолы и активного разбавителя,

- причем активный разбавитель является стиролом, винилтолуолом, в частности о-винилтолуолом, м-винилтолуолом и/или п-винилтолуолом, алкилакрилатом и/или алкандиолдиакрилатом, в частности гександиолдиакрилатом, в частности 1,6-гександиолдиакрилатом,

- причем базовая смола является эпоксидной смолой, полиэфиримидом, в частности ненасыщенным полиэфиримидом, сложным полиэфиром, в частности ненасыщенным полиэфиром, и/или полиуретаном,

- причем сшивающий агент представляет собой

бицикло[2.2.1]гепт-5-ен-2,3-дикарбоксиангидрид,

1-метилбицикло[2.2.1]гепт-5-ен-2,3-дикарбоксиангидрид,

2-метилбицикло [2.2.1]гепт-5-ен-2,3-дикарбоксиангидрид,

5-метилбицикло[2.2.1]гепт-5-ен-2,3-дикарбоксиангидрид и/или

7-метилбицикло[2.2.1]гепт-5-ен-2,3-дикарбоксиангидрид.

2. Пропиточная смола по п. 1, причем отношение m(активный разбавитель)/(m(базовая смола)+m(активный разбавитель)) составляет от 0,3 до 0,7, особенно предпочтительно от 0,4 до 0,6, где m(базовая смола) и m(активный разбавитель) означают соответственно массу базовой смолы и активного разбавителя в пропиточной смоле.

3. Пропиточная смола по одному из пп. 1-2, причем наночастицы являются неорганическими частицами, которые содержат, в частности, оксид алюминия, гидроксид алюминия, диоксид кремния, диоксид титана, оксид редкоземельного металла, оксид щелочного металла, нитрид металла и/или слоистые силикаты, в частности, эксфолиированые или частично эксфолиированые слоистые силикаты.

4. Электроизоляционный кожух с электроизоляционной лентой, предпочтительно с электроизоляционной лентой, содержащей слюду и/или оксид алюминия и пропитанной пропиточной смолой по одному из пп. 1-3.

5. Электроизоляционный кожух по п. 4, причем отношение m(пропиточная смола)/(m(пропиточная смола)+m(электроизоляционная лента)) составляет от 0,1 до 0,6, где m(пропиточная смола) и m(электроизоляционная лента) означают соответственно массу пропиточной смолы и электроизоляционной ленты в электроизоляционном кожухе.

6. Способ получения электроизоляционного кожуха с электроизоляционной лентой, включающий следующие этапы:

a) получение пропиточной смолы, которая содержит базовую смолу, наполнитель, содержащий наночастицы, и способный к радикальной полимеризации активный разбавитель, путем

a1) смешения наполнителя с активным разбавителем;

a2) смешения активного разбавителя с базовой смолой;

b) пропитка электроизоляционной ленты пропиточной смолой;

c) отверждение пропиточной смолы.

7. Способ по п. 6, включающий этап:

a3) установка вязкости пропиточной смолы путем повышения вязкости посредством добавления олигомера базовой смолы или олигомера компонента базовой смолы, в частности олигомера эпоксидного соединения, содержащего по меньшей мере две эпоксидные группы, в частности олигомера диглицидилового эфира бисфенола A и/или олигомера диглицидилового эфира бисфенола F.

Документы, цитированные в отчете о поиске Патент 2018 года RU2648981C2

ПРОПИТОЧНЫЙ СОСТАВ 1992
  • Ханукова Э.С.
  • Ваксер Б.Д.
  • Петров В.В.
  • Урванцева Г.М.
  • Соколов Ю.А.
  • Спиридонов В.М.
  • Чибриков А.Н.
  • Ефимова Н.Н.
  • Хазанов А.И.
  • Пьянкова С.Н.
  • Саар Л.И.
RU2010367C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПРОПИТОЧНО-ЗАЛИВОЧНОГО САМОЗАТУХАЮЩЕГО КОМПАУНДА 1993
  • Требенок В.М.
  • Фомина В.М.
  • Шкутова Л.Г.
  • Заваруева Н.Р.
RU2099368C1
WO 2010086228 A1, 05.08.2010
WO 2012013439 A1, 02.02.2012.

RU 2 648 981 C2

Авторы

Брокшмидт Марио

Польманн Фридхельм

Райнер Франк

Даты

2018-03-29Публикация

2014-01-24Подача