Способ контроля ресурса электрической изоляции трансформатора Российский патент 2018 года по МПК G01K13/00 G01H1/16 G01R31/02 

Описание патента на изобретение RU2649646C1

Предлагаемое изобретение относится к электротехнике и предназначено для контроля ресурса электрической изоляции сухих силовых трансформаторов.

Известны способы контроля ресурса электрической изоляции трансформатора, при которых измеряют температуру θп наиболее нагретой точки трансформатора, вычисляют износ по формуле , где t - время включенного состояния; μ=0,116 - коэффициент пропорциональности, характеризующий температурный износ; θн - номинальная температура, и рассчитывают остаточный ресурс (Ермаков В.Ф., Балыкин Е.С., Горобец А.В., Коваленко А.Н. Опытный образец микропроцессорного счетчика ресурса силовых трансформаторов / Известия вузов. Электромеханика, 2013, №1. - С. 68-70; АС СССР 2041496, МПК G06F 7/18, 1991; Патент РФ №2384879, МПК G06F 17/18, 2010).

Известные способы обеспечивают контроль ресурса электрической изоляции трансформатора на основе учета теплового износа. При этом не учитываются важные составляющие износа, обусловленные термомеханическим и вибрационным разрушением изоляции.

Следовательно, недостатком известных способов является низкая точность контроля ресурса изоляции.

Из известных технических решений наиболее близким к предлагаемому по достигаемому результату является способ контроля ресурса электрической изоляции трансформатора, при котором измеряют температуру θп наиболее нагретой точки трансформатора, определяют количество n циклов «нагревание-охлаждение» с перепадом температуры более Δθ, и рассчитывают остаточный ресурс по формуле:

,

где Т0 - номинальный ресурс изоляции трансформатора, k1 и k2 - весовые коэффициенты, равные расчетным коэффициентам ресурсного износа изоляции трансформатора; t - время включенного состояния; μ=0,116 - коэффициент пропорциональности, характеризующий температурный износ; θн - номинальная температура, Δθ=αθн; α - коэффициент, зависящий от материалов обмоток и изоляции (Патент РФ №2559785, МПК G01R 31/00; H01F 41/12, 2015).

При реализации известного способа во время работы трансформатора непрерывно производится вычисление значения остаточного ресурса и его сравнение с предельным значением, при достижении которого формируется контрольный сигнал. Одним из наиболее опасных дефектов в трансформаторах является деформация обмоток. Появление деформации обуславливается воздействием токов короткого замыкания при условии снижения электродинамической стойкости обмоток за счет снижения усилия прессовки. Снижение усилия прессовки происходит в процессе эксплуатации из-за вибрации, динамических нагрузок и деструкции твердой изоляции. Известный способ обеспечивает контроль ресурса трансформатора на основе учета теплового и термомеханического износа изоляции. При этом не учитывается важная составляющая износа, обусловленная разрушением изоляции за счет действия вибрации. Так как коэффициенты линейного расширения проводников и изоляции не совпадают, то при многократном повторении цикла «нагревание-охлаждение» в изоляции образуются трещины, расслоения и другие механические повреждения, сопровождаемые резким снижением электрических параметров.

Таким образом, недостатком известного способа является низкая точность контроля ресурса изоляции.

Цель предлагаемого изобретения - повышение точности контроля ресурса изоляции трансформатора.

Поставленная цель достигается тем, что в известном способе контроля ресурса электрической изоляции трансформатора, при котором измеряют температуру θп наиболее нагретой точки трансформатора, определяют количество n циклов «нагревание-охлаждение» с перепадом температуры более Δθ, и рассчитывают остаточный ресурс, дополнительно измеряют амплитуду вибраций трансформатора x и определяют остаточный ресурс по формуле:

,

где Т0 - номинальный ресурс изоляции трансформатора, t - время включенного состояния; μ=0,116 - коэффициент пропорциональности, характеризующий температурный износ; θн - номинальная температура, k1, k2 и k3 - весовые коэффициенты, равные расчетным коэффициентам ресурсного износа электрической изоляции трансформатора, а перепад температуры в цикле «нагревание - охлаждение» вычисляют по формуле , где α - коэффициент, зависящий от материалов обмоток и изоляции.

По сравнению с наиболее близким аналогичным техническим решением предлагаемый способ имеет следующие новые признаки:

- измеряют амплитуду вибраций трансформатора x;

- вычисляют перепад температуры в цикле «нагревание-охлаждение» по формуле , где α - коэффициент, зависящий от материалов обмоток и изоляции;

- определяют остаточный ресурс по формуле:

,

где T0 - номинальный ресурс изоляции трансформатора, t - время включенного состояния; μ=0,116 - коэффициент пропорциональности, характеризующий температурный износ; θн - номинальная температура, k1, k2 и k3 - весовые коэффициенты, равные расчетным коэффициентам ресурсного износа электрической изоляции трансформатора.

Следовательно, заявляемое техническое решение соответствует требованию «новизна».

По каждому из отличительных признаков проведен поиск известных технических решений в области электротехники, автоматики, контроля и диагностики.

Операция измерения амплитуды вибраций х трансформатора используется в известных технических решениях (Русов В.А., Софьина Н.Н. Вибрационное обследование и диагностика состояний силовых трансформаторов // Методы и средства оценки состояния энергетического оборудования. Выпуск 11. - СПб.: ПЭИПК, 2000. - С. 38-53) с целью вибрационной диагностики усилия прессовки.

Операция вычисления перепада температуры в цикле «нагревание - охлаждение» по формуле , где α - коэффициент, зависящий от материалов обмоток и изоляции, в известных способах аналогичного назначения не обнаружена.

Операция определения остаточного ресурса по формуле:

,

где Т0 - номинальный ресурс изоляции трансформатора, t - время включенного состояния; μ=0,116 - коэффициент пропорциональности, характеризующий температурный износ; θн - номинальная температура, k1, k2 и k3 - весовые коэффициенты, равные расчетным коэффициентам ресурсного износа электрической изоляции трансформатора, в известных способах аналогичного назначения не обнаружена.

Таким образом, указанные признаки обеспечивают заявляемому техническому решению соответствие требованию «существенные отличия».

При реализации предлагаемого технического решения обеспечивается повышение точности контроля ресурса трансформатора путем учета влияния вибрации на тепловое старения изоляции и ее термомеханический износ. Оценивание термомеханического износа осуществляется путем подсчета количества циклов «нагревание-охлаждение» с перепадом температуры более Δθ=αθн, которые происходят при включениях трансформатора или подключениях нагрузок. При нагреве происходит тепловая деформация проводящих элементов и изоляции. Так как материалы изоляции и проводников имеют разные температурные коэффициенты линейного расширения, то деформация вызывает механическую нагрузку на изоляцию. Особенно неблагоприятное влияние на изоляцию оказывают многократные циклы «нагревание - охлаждение», например, при частых включениях, в условиях действия вибрации. Учет влияния вибрации на температурный и термомеханический износ изоляции позволяет повысить точность контроля ресурса трансформатора.

Следовательно, заявляемое техническое решение соответствует требованию «положительный эффект».

Сущность предлагаемого способа контроля ресурса изоляции силового трансформатора поясняется чертежами. На фиг. 1 приведена функциональная схема системы контроля ресурса изоляции силового трансформатора. На чертеже обозначено: 1 - автоматический выключатель, содержащий силовые контакты 2 и блок-контакт 3, предназначенный для идентификации включенного состояния трансформатора, 4 - трансформатор; 5 - датчик температуры наиболее нагретой точки трансформатора, 6 - датчик амплитуды вибрации; 7 - нагрузка трансформатора; 8 - контроллер, 9 - шина данных, 10 - промышленный компьютер, 11 - монитор.

Работа устройства контроля ресурса электрической изоляции трансформатора происходит следующим образом. Сигналы с датчика температуры наиболее нагретой точки трансформатора 5, датчика амплитуды вибрации 6 и блок-контакта 3 автоматического выключателя 1 поступают на входы контроллера 8. Контроллер 8 выполняет следующие функции:

- определение включенного состояния трансформатора 4 при замкнутых контактах 3;

- аналого-цифровое преобразование сигнала с датчика температуры 5;

- аналого-цифровое преобразование сигнала с датчика амплитуды вибрации 6;

- вычисление текущего значения перепада температуры по формуле ;

- регистрация и хранение данных о температуре и уровне вибрации;

- обработка зарегистрированных данных, определение минимальных и максимальных значений температуры;

- подсчет количества n циклов «нагревание-охлаждение» с перепадом температуры более ;

- вычисление полного времени работы (включенного состояния) трансформатора;

- вычисление остаточного ресурса изоляции обмоток трансформатора по формуле

.

Данные о полном времени работы t и величине остаточного ресурса Т по шине 9 передаются в компьютер 10 для регистрации и хранения и отображаются с помощью монитора 11.

На фиг. 2 показаны диаграммы изменения температуры θп наиболее нагретой точки трансформатора, амплитуды вибрации x, изменения перепада температуры и подсчета циклов «нагревание-охлаждение», при которых перепад температуры превышает .

Таким образом, использование в известном способе контроля ресурса электрической изоляции трансформатора, при котором измеряют температуру θп наиболее нагретой точки трансформатора, определяют количество n циклов «нагревание - охлаждение» с перепадом температуры более Δθ, и рассчитывают остаточный ресурс, дополнительно измерения амплитуды вибраций трансформатора x и определения остаточного ресурса по формуле:

,

где Т0 - номинальный ресурс изоляции трансформатора, t - время включенного состояния; μ=0,116 - коэффициент пропорциональности, характеризующий температурный износ; θн - номинальная температура, k1, k2 и k3 - весовые коэффициенты, равные расчетным коэффициентам ресурсного износа электрической изоляции трансформатора, а перепад температуры в цикле «нагревание-охлаждение» вычисляют по формуле , где α - коэффициент, зависящий от материалов обмоток и изоляции, позволяет повысить точность контроля ресурса изоляции трансформатора.

Использование предлагаемого способа при автоматизированном контроле и диагностике трансформаторов, будет способствовать повышению надежности и качества работы электрооборудования.

Похожие патенты RU2649646C1

название год авторы номер документа
СПОСОБ КОНТРОЛЯ РЕСУРСА ИЗОЛЯЦИИ СИЛОВОГО ТРАНСФОРМАТОРА 2014
  • Малафеев Сергей Иванович
  • Тихонов Юрий Васильевич
RU2559785C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ 2013
  • Малафеев Сергей Иванович
  • Тихонов Юрий Васильевич
RU2550337C2
СПОСОБ КОНТРОЛЯ ИЗНОСА ЩЕТОК И РАБОТЫ ЩЕТОЧНО-КОЛЛЕКТОРНОГО УЗЛА ЭЛЕКТРИЧЕСКОЙ МАШИНЫ 2013
  • Малафеев Сергей Иванович
  • Тихонов Юрий Васильевич
RU2548020C2
СПОСОБ ЭКСПЛУАТАЦИОННОГО КОНТРОЛЯ СОСТОЯНИЯ ИЗОЛЯЦИИ И РЕСУРСА ОБМОТОК ЭЛЕКТРОДВИГАТЕЛЕЙ 2011
  • Некрасов Алексей Иосифович
  • Борисов Юрий Семенович
  • Некрасов Антон Алексеевич
  • Марчевский Сергей Владимирович
  • Ефимов Андрей Валерьевич
RU2491560C2
СПОСОБ ДИАГНОСТИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ ПЕРЕМЕННОГО ТОКА И СВЯЗАННЫХ С НИМИ МЕХАНИЧЕСКИХ УСТРОЙСТВ 2005
  • Петухов Виктор Сергеевич
  • Соколов Василий Александрович
  • Григорьев Олег Александрович
  • Великий Сергей Николаевич
  • Михель Александр Альбертович
RU2300116C2
СЧЕТЧИК РЕСУРСА ТРАНСФОРМАТОРА ПРИ НЕСИММЕТРИЧНОЙ НАГРУЗКЕ ФАЗ 2013
  • Ермаков Владимир Филиппович
  • Литаш Борис Сергеевич
RU2526498C1
ПРОПОРЦИОНАЛЬНО-ИНТЕГРАЛЬНЫЙ РЕГУЛЯТОР 2017
  • Малафеев Сергей Сергеевич
RU2648516C1
СПОСОБ ИЗМЕРЕНИЯ АКТИВНОЙ И РЕАКТИВНОЙ СОСТАВЛЯЮЩИХ ТОКА ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ СЕТИ 1991
  • Малафеев Сергей Иванович
RU2093840C1
СПОСОБ ДИАГНОСТИКИ ЭЛЕКТРОДВИГАТЕЛЯ ПЕРЕМЕННОГО ТОКА И СВЯЗАННЫХ С НИМ МЕХАНИЧЕСКИХ УСТРОЙСТВ 2007
  • Петухов Виктор Сергеевич
RU2339049C1
СЧЕТЧИК ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 1993
  • Малафеев Сергей Иванович
  • Мамай Виктор Степанович
RU2093836C1

Иллюстрации к изобретению RU 2 649 646 C1

Реферат патента 2018 года Способ контроля ресурса электрической изоляции трансформатора

Изобретение относится к электротехнике и предназначено для контроля ресурса электрической изоляции сухих силовых трансформаторов. Сигналы с датчика температуры наиболее нагретой точки трансформатора 5, датчика амплитуды вибрации 6 и блок-контакта 3 автоматического выключателя 1 поступают на входы контроллера 8. Контроллер 8 выполняет следующие функции: определение включенного состояния трансформатора 4 при замкнутых контактах 3, аналого-цифровое преобразование сигнала с датчика температуры 5 и с датчика амплитуды вибрации 6, вычисление текущего значения перепада температуры по формуле ,

подсчет количества n циклов «нагревание-охлаждение» с перепадом температуры более , вычисление полного времени работы (включенного состояния) трансформатора и остаточного ресурса изоляции обмоток трансформатора по формуле

. Данные о полном времени работы t и величине остаточного ресурса Т по шине 9 передаются в компьютер 10 для регистрации и хранения и отображаются с помощью монитора 11. Технический результат – повышение точности контроля ресурса изоляции трансформатора. 2 ил.

Формула изобретения RU 2 649 646 C1

Способ контроля ресурса электрической изоляции трансформатора, при котором измеряют температуру θп наиболее нагретой точки трансформатора, определяют количество n циклов «нагревание-охлаждение» с перепадом температуры более Δθ, и рассчитывают остаточный ресурс, отличающийся тем, что дополнительно измеряют амплитуду вибраций трансформатора x и определяют остаточный ресурс по формуле:

где Т0 - номинальный ресурс изоляции трансформатора, t - время включенного состояния; μ=0,116 - коэффициент пропорциональности, характеризующий температурный износ; θн - номинальная температура, k1, k2 и k3 - весовые коэффициенты, равные расчетным коэффициентам ресурсного износа электрической изоляции трансформатора, а перепад температуры в цикле «нагревание - охлаждение» вычисляют по формуле , где α - коэффициент, зависящий от материалов обмоток и изоляции.

Документы, цитированные в отчете о поиске Патент 2018 года RU2649646C1

СПОСОБ КОНТРОЛЯ РЕСУРСА ИЗОЛЯЦИИ СИЛОВОГО ТРАНСФОРМАТОРА 2014
  • Малафеев Сергей Иванович
  • Тихонов Юрий Васильевич
RU2559785C1
Очиститель корнеплодов четырехшнековый 1957
  • Аванесов К.Б.
  • Архипов Н.К.
  • Кореньков В.А.
  • Репчанский А.А.
SU108855A2
Клапан горячего дутья 1990
  • Пхайко Евгений Семенович
  • Фищенко Евгений Илларионович
  • Толпин Абрам Исаакович
  • Шед Вениамин Иосифович
SU1786083A1
CN 101937047 A, 05.01
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
СЧЕТЧИК РЕСУРСА СИЛОВОГО ТРАНСФОРМАТОРА 2008
  • Ермаков Владимир Филиппович
  • Балыкин Евгений Сергеевич
  • Ермакова Елена Владимировна
RU2384879C1
Способ определения превышения температуры обмоток сухих трансформаторов над температурой окружающей среды 1991
  • Бальян Роблен Хоренович
  • Гельман Михаил Захарович
SU1814733A3
US 6906630 B2, 14.06.2005.

RU 2 649 646 C1

Авторы

Малафеев Сергей Сергеевич

Даты

2018-04-04Публикация

2017-04-04Подача