Гидроакустический способ управления торпедой Российский патент 2018 года по МПК G01S15/00 

Описание патента на изобретение RU2649675C1

Изобретение относится к области гидроакустики и может быть использовано для построения систем управления движения торпедами с использованием гидроакустических станций освещения ближней обстановки.

Современные торпеды являются самоходными автономными необитаемыми аппаратами, которые используются на современных подводных лодках с целью поражения обнаруженного объекта. На современных торпедах установлены гидроакустические станции, которые позволяют автономно обнаруживать объект и проводить его уничтожение. Однако современные гидроакустические системы, установленные на подводных лодках, обнаруживают движущуюся торпеду и ее уничтожают на подходе и, кроме того, они используют средства гидроакустического противодействия и устанавливают имитаторы, которые обнаруживаются как объекты. В этой ситуации гидроакустический комплекс торпеды не способен обнаружить реальный объект и тогда используют гидроакустическую станцию освещения ближней обстановки, которая управляет торпедой по проводам (В.В. Сурин, Ю.Н. Пелевин, В.Л. Чулков. «Противолодочные средства иностранных флотов» М.: МО, 1991 г., стр. 63-80).

Известна гидроакустическая система по патенту №2501038, которая содержит НГАС ОБО, включающую антенную систему, тракт предварительной обработки, ЦВС-1 и ЦВС-2, блок обработки сигналов прямого распространения от торпеды, блок определения координат положения торпеды относительно навигационной станции и относительно цели, блок определения команд управления движением торпеды, генератор и антенну излучения команд управления, систему классификации по эхо-сигналам, полученным при излучении гидролокатора торпеды, блок управления движением торпеды, содержащий приемное устройство с антенной, декодер и исполнительное устройство воздействия на элементы движения торпеды.

Наиболее близким аналогом по числу общих признаков является способ, реализуемый системой по патенту №2501038. В соответствии с этим способом торпеда излучает зондирующий сигнал через фиксированные промежутки времени, НГАС ОБО принимает отраженные от цели эхо-сигналы, определяет координаты обнаруженной цели, определяет положение движущейся торпеды, измеряет классификационные признаки обнаруженной цели, определят отклонение торпеды от направления движения на цель, формирует сигналы управления движением торпеды и излучает эти сигналы. Акустическая система торпеды принимает сигналы управления, декодирует сигналы управления торпедой, включает исполнительные механизмы управления торпедой и корректирует движение торпеды.

Недостатком этого способа, реализованного в гидроакустической системе, по патенту №2501038 является то, что при использовании торпеды на больших дистанциях эхо-сигналы от цели будут затухать, поэтому провести обнаружение цели, классификацию и управление торпедой по своему прямому назначению станет невозможным.

Решение задачи многоклассового автоматического распознавания эхо-сигналов гидролокатора торпеды в условиях априорной неопределенности является достаточно трудоемкой и в большинстве случаев невыполнимой. Для решения этой задачи необходимы не только хорошие технические средства, которые обеспечат гидроакустическое вооружение высокими тактико-техническими характеристиками. Автономные гидролокаторы торпеды не обладают такими характеристиками и не могут эффективно справиться с решением задачи автоматического обнаружения и тем более классификации, обнаруженных целей с требуемой достоверностью на фоне нестационарной помехи, обусловленной сложной помехо-сигнальной обстановкой. Невозможно оснастить торпеду хорошим гидроакустическим активно-пассивным комплексом и улучшить помехо-сигнальную ситуацию на входе приемного тракта гидролокатора торпеды, которая возникает по объективным причинам, связанным с движением торпеды и наличием поверхностной и донной реверберацией при излучении зондирующего сигнала. Уровень собственного шума движения торпеды существенно превышает уровень помех при движении подводной лодки носителя гидроакустического комплекса. В настоящее время существующие торпеды могут быть использованы на больших дистанциях, поэтому эхо-сигналы от обнаруженной цели будут затухать, что не позволит достоверно классифицировать обнаруженные цели в условиях гидроакустического противодействия с постановкой имитаторов. Поэтому метод, предложенный в способе-прототипе, не обеспечит качественное обнаружение и классификацию на больших дистанциях и точное наведение торпеды.

Задачей настоящего изобретения является повышение эффективности функциональных возможностей гидроакустического способа обнаружения цели и управления торпедой, основанного на использовании торпеды и гидролокатора освещения ближней обстановки.

Техническим результатом от использования предлагаемого изобретения является повышение эффективности обнаружения и классификации обнаруженной цели с помощью автономных управляемых торпед при больших дистанциях до цели.

Указанный технический результат может быть достигнут, если в способ, содержащий выпуск первой торпеды в сторону цели, излучающей зондирующие сигналы через фиксированные промежутки времени, прием эхо-сигналов от цели гидроакустической станцией освещения ближней обстановки, выделение классификационных признаков эхо-сигнала от цели, определение класса цели, формирование сигналов управления торпедой, введены новые признаки, а именно, когда первая торпеда начинает излучать зондирующие сигналы в сторону цели, выпускают вторую торпеду, управляемую по проводам в направлении на цель, приемным трактом второй торпеды принимают отраженные от цели эхо-сигналы, излученные первой торпедой, усиливают принятые эхо-сигналы, преобразуют их в цифровой код и передают по проводной линии управления на вход гидроакустической станции освещения ближней обстановки, посредством которого принимают цифровой сигнал, формируют характеристики направленности приемной гидроакустической антенны, определяют положение цели относительно направления движения второй торпеды, определяют положение цели относительно направления движения первой торпеды, выделяют классификационные признаки цели и определяют класс цели, дистанцию до цели, а также формируют сигнал отклонения направления движения второй торпеды от положения цели, после чего передают сигнал управления по проводам на вторую торпеду, при приеме каждого очередного зондирующего сигнала корректируют направление движения управляемой второй торпеды для достижения цели.

Сущность изобретения заключается в следующем: с помощью двух торпед удается разнести излучение и прием. При этом излучение происходит на дистанции, близкой к обнаруженной цели, и на этой дистанции зондирующий сигнал не успевает значительно ослабеть. Кроме того, на прием эхо-сигнала второй торпедой не оказывает влияние реверберация, которая следует после излучения зондирующего сигнала, что ограничивает длительность излучаемого сигнала и соответственно излучаемую энергию и связанную с этим дальность обнаружения. Отраженный эхо-сигнал распространяется на меньшее расстояние и принимается приемной антенной второй торпеды на фоне шума собственного движения, а не на фоне поверхностной реверберации. Это позволяет повысить информативность классификации и точность управления второй торпедой, которая используется по своему прямому назначению.

Сущность изобретения поясняется фиг. 1, на которой приведена блок- схема системы, реализующей предлагаемый способ.

Система (фиг. 1) содержит торпеду 1 с гидролокатором излучения зондирующих сигналов, торпеду 2 приема эхо-сигналов, в состав которой входит блок 3 приема эхо-сигналов и блок 4 приема сигналов управления. Гидроакустическая станция 5 освещения ближней обстановки, в состав которой входит блок 6 приема входной информации, блок 7 пространственной обработки, блок 8 временной обработки, блок 9 выделения классификационных признаков, блок 10 принятия решения о классе обнаруженного объекта, блок 11 отображения и управления оператором, блок 12 определения координат объекта, блок 13 выработки сигналов управления, блок 14 передачи сигналов управления.

Гидроакустическая станция освещения ближней обстановки является известным устройством, которое используется в прототипе, может быть реализована по патентам прототипа.

В настоящее время практически вся гидроакустическая аппаратура выполняется на спецпроцессорах, которые преобразуют акустический сигнал в цифровой вид и производят в цифровом виде формирование характеристик направленности, многоканальную обработку и спектральную обработку, измерение помехи, обнаружение сигнала и сравнение с порогом, обработку по времени и по частоте и принятие решения о цели. Для качественного решения задач обработки гидроакустической информации в современных корабельных гидроакустических средствах (станциях) используются спецпроцессоры на основе ЦВС, обладающие высокой производительностью, функциональной надежностью и малыми габаритами. С использованием специального алгоритмического и программного обеспечения спецпроцессорами могут решаться все задачи формирования и обработки принимаемых гидроакустических сигналов, обнаружения эхо-сигналов, измерения их параметров, в том числе определение пространственных и временных характеристик эхо-сигнала (Ю.А. Корякин, С.А. Смирнов, Г.В. Яковлев. «Корабельная гидроакустическая техника», СПб: «Наука», 2004 г., стр. 281).

Телеуправляемые по проводам торпеды, которые используются по своему прямому назначению, являются известными устройствами, широко используемыми в современных флотах (В.В. Сурин Ю.Н. Пелевин В.Л. Чулков. «Противолодочные средства иностранных флотов». М.: Военное издательство, 1991 г.) В качестве торпеды с излучением зондирующего сигнала может быть использована обычная торпеда, в которой проведены несущественные изменения режима работы, связанной с управлением последовательности излучения зондирующего сигнала.

С помощью предложенной системы заявленный способ реализуется следующим образом.

После того как принято решение об обнаружении на большой дистанции подводной лодки, выпускается торпеда 1 с гидролокатором с излучением зондирующих сигналов. В направлении предполагаемой цели торпеда 1 сначала движется без излучения, а на определенной дистанции начинает излучать зондирующие сигналы. Время движения первой торпеды без излучения выбирается оператором в зависимости от предполагаемой дистанции обнаруженной цели. С началом излучения зондирующих сигналов первой торпеды выпускается вторая торпеда 2 с системой управления по проводам и блоком 3 приема отраженных от обнаруженной цели при излучении зондирующих сигналов торпедой 1. Принятые блоком 3 эхо-сигналы усиливаются и передаются по проводной связи на вход гидроакустической станции 5 освещения ближней обстановки. По принятой цифровой информации производится пространственная обработка в блоке 6, которая позволяет сформировать узкие характеристики направленности и определить пространственные параметры обнаруженной цели и его отклонение от траектории движения. В блоке 7 производится временная обработка принятой информации и выделение временных классификационных признаков, дистанции и скорости цели. В блоке 9 производится выделение классификационных признаков по измеренной пространственной и временной информации, на основании которой в блоке 10 принимается решение о классе обнаруженной цели. В блоке 11 вся информация оценивается оператором и принимается решение о корректировке направления движения второй торпеды относительно обнаруженной цели, координаты которого определены в блоке 12. В блоке 13 вырабатываются сигналы, которые должны скорректировать движение второй торпеды на выбранную цель. Через блок передачи сигналов 13 информация о корректировке передается на торпеду 2 по проводам в блок 4 приема сигналов управления, после чего на исполнительные механизмы, существующие на телеуправляемой торпеде, поступают конкретные сигналы управления.

Таким образом, используя разнесенное излучение и прием, что обеспечивает отсутствие поверхностной реверберации на входе приемной антенны, и используя энергетический потенциал системы обработки гидроакустической станции освещения подводной обстановки, может быть обеспечено повышение эффективности управления использования торпедного оружия по своему прямому назначению.

Похожие патенты RU2649675C1

название год авторы номер документа
ГИДРОАКУСТИЧЕСКАЯ СИСТЕМА 2012
  • Тимошенков Валерий Григорьевич
  • Смирнов Станислав Алексеевич
RU2501038C1
СИСТЕМА АВТОМАТИЧЕСКОГО ОБНАРУЖЕНИЯ И КЛАССИФИКАЦИИ ГИДРОЛОКАТОРА БЛИЖНЕГО ДЕЙСТВИЯ 2016
  • Тимошенков Валерий Григорьевич
  • Волгина Марина Всеволодовна
  • Воробьев Александр Викторович
RU2626295C1
Способ отображения гидролокационной информации 2019
  • Тимошенков Валерий Григорьевич
  • Афанасьев Александр Николаевич
RU2726312C1
Способ обработки гидролокационной информации 2017
  • Тимошенков Валерий Григорьевич
RU2657121C1
Способ отображения гидролокационной информации 2019
  • Тимошенков Валерий Григорьевич
  • Смирнов Станислав Алексеевич
RU2724245C1
СИСТЕМА АВТОМАТИЧЕСКОЙ КЛАССИФИКАЦИИ ГИДРОЛОКАТОРА БЛИЖНЕГО ДЕЙСТВИЯ 2013
  • Тимошенков Валерий Григорьевич
  • Волгина Марина Всеволодовна
  • Белов Юрий Валерьевич
  • Воробьев Александр Викторович
RU2534731C1
Способ классификации целей, адаптированный к гидроакустическим условиям 2016
  • Тимошенков Валерий Григорьевич
  • Никулин Максим Николаевич
RU2624826C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПОГРУЖЕНИЯ ОБЪЕКТА 2012
  • Величкин Сергей Максимович
  • Горланов Николай Ефимович
  • Тимошенков Валерий Григорьевич
  • Ярыгин Владимир Александрович
RU2516602C1
СПОСОБ ОБРАБОТКИ ГИДРОЛОКАЦИОННОЙ ИНФОРМАЦИИ 2013
  • Антипов Владимир Александрович
  • Горланов Николай Ефимович
  • Величкин Сергей Максимович
  • Тимошенков Валерий Григорьевич
  • Ярыгин Владимир Александрович
RU2529441C1
Способ измерения глубины погружения объекта 2022
  • Тимошенков Валерий Григорьевич
RU2789811C1

Иллюстрации к изобретению RU 2 649 675 C1

Реферат патента 2018 года Гидроакустический способ управления торпедой

Гидроакустический способ управления торпедой, содержащий выпуск торпеды, которая излучает зондирующие сигналы через фиксированные промежутки времени, прием эхосигналов гидролокатором освещения ближней обстановки, выделение классификационных признаков, определение класса объекта, формирование сигналов управления, используются одновременно две торпеды, выпускаемые в сторону цели, первая из которых начинает излучать зондирующие сигналы через фиксированные интервалы времени после выпуска второй торпеды в направлении на цель, управление которой осуществляется по проводам, приемный тракт второй торпеды принимает отраженные от цели эхо-сигналы, передает на гидролокатор освещения ближней обстановки, который корректирует движение второй торпеды. 1 ил.

Формула изобретения RU 2 649 675 C1

Гидроакустический способ управления торпедой, содержащий выпуск первой торпеды в сторону цели, излучающей зондирующие сигналы через фиксированные промежутки времени, прием эхо-сигналов от цели гидроакустической станцией освещения ближней обстановки, выделение классификационных признаков эхо-сигнала от цели, определение класса цели, формирование сигналов управления торпедой, отличающийся тем, что, когда первая торпеда начинает излучать зондирующие сигналы в сторону цели, выпускают вторую торпеду, управляемую по проводам в направлении на цель, приемным трактом второй торпеды принимают отраженные от цели эхо-сигналы, излученные первой торпедой, усиливают принятые эхо-сигналы, преобразуют их в цифровой код и передают по проводной линии управления на вход гидроакустической станции освещения ближней обстановки, посредством которого принимают цифровой сигнал, формируют характеристики направленности приемной гидроакустической антенны, определяют положение цели относительно направления движения второй торпеды, определяют положение цели относительно направления движения первой торпеды, выделяют классификационные признаки цели и определяют класс цели, дистанцию до цели, а также формируют сигнал отклонения направления движения второй торпеды от положения цели, после чего передают сигнал управления по проводам на вторую торпеду, при приеме каждого очередного зондирующего сигнала корректируют направление движения управляемой второй торпеды для достижения цели.

Документы, цитированные в отчете о поиске Патент 2018 года RU2649675C1

ГИДРОАКУСТИЧЕСКАЯ СИСТЕМА 2012
  • Тимошенков Валерий Григорьевич
  • Смирнов Станислав Алексеевич
RU2501038C1
ТОРПЕДА УНИВЕРСАЛЬНАЯ 2012
  • Болотин Николай Борисович
  • Нефедова Елена Николаевна
  • Болотина Марина Николаевна
  • Нефедова Марина Леонардовна
RU2477448C1
Керосиновая и т.п. лампа с приспособлением для автоматического гашения ее при падении 1928
  • Певзнер А.И.
SU20055A1
УНИВЕРСАЛЬНАЯ ДВУХРЕЖИМНАЯ ТВЕРДОТОПЛИВНАЯ ТОРПЕДА 2004
  • Волков Роберт Владимирович
  • Гуров Владимир Федорович
  • Кульбицкий Валерий Константинович
  • Лихачев Владимир Петрович
  • Новиков Борис Анисимович
  • Санников Юрий Иванович
  • Чачко Валерий Семенович
RU2289091C2
УПРАВЛЯЕМАЯ ТОРПЕДА 2000
  • Шипунов А.Г.
  • Фимушкин В.С.
  • Сотников В.А.
  • Евтеев К.П.
RU2189004C2
WO 2015157315 A1, 15.10.2015.

RU 2 649 675 C1

Авторы

Тимошенков Валерий Григорьевич

Антипов Владимир Алексеевич

Макарчук Юрий Игоревич

Даты

2018-04-04Публикация

2017-02-16Подача