Изобретение относится к аналитической химии и может быть использовано для определения содержания нефтяных топлив (керосинов, бензинов, дизельных топлив) в грунтах «на месте».
Известен способ определения массовой концентрации нефтепродуктов, основанный на их экстракции из образца воздушно-сухой пробы почвы хлороформом, отделении от полярных соединений методом колоночной хроматографии после растворителя на гексан и количественном определении гравиметрическим методом [ПНД Ф 16.1.41.04. Количественный химический анализ почв. Методика выполнения измерений массовой концентрации нефтепродуктов в пробах почв гравиметрическим методом / М.: Министерство природных ресурсов РФ, 2004]. Способ характеризуется длительностью, сложной пробоподготовкой, низкой воспроизводимостью (sr=26%); требует специально оборудованной лаборатории, дополнительных приборов и реактивов (в том числе опасных), высокой квалификации персонала.
Наиболее близким способом определения содержания нефтяных топлив (НТ) в грунтах является спектроскопия в ближней инфракрасной области в диапазоне значений массовой доли нефтепродуктов от 0,1 до 10,0% [ГОСТ РФ 54039-2010. Качество почв. Экспресс-метод спектроскопии в ближней инфракрасной области для определения содержания нефтепродуктов / М.: Стандартинформ, 2011]. К его недостаткам относятся: жесткие требования к условиям проведения анализа в специально оборудованной лаборатории (t=15÷25°С, без сквозняков, соблюдение правил пожарной безопасности), длительная пробоподготовка, необходимость дополнительных блоков, химической посуды и реактивов, квалифицированного персонала для проведения измерений и обработки результатов анализа. Для измерения концентраций от 1000 до 100000 мг/кг строят три градуировочных графика для каждого типа НТ, при этом погрешность анализа значительно возрастает в области высоких концентраций и достигает 25%.
Техническим результатом изобретения является повышение мобильности и экспрессности анализа за счет исследования грунта «на месте» без стадий пробоотбора и пробоподготовки в широком интервале температур; возможность оценки слабых и средних загрязнений грунтов нефтяными топливами.
Технический результат достигается тем, что в способе определения содержания нефтяных топлив в грунтах, включающем определение типа грунта, определение типа нефтяного топлива, установление содержания концентрации топлива по градуировочным графикам, измеряют температуру грунта, на покрытии пьезосенсора сорбируют равновесные газы естественного происхождения над незагрязненным грунтом и фиксируют изменение частоты колебаний пьезосенсора, затем также сорбируют газы над загрязненным нефтяным топливом грунтом и фиксируют изменение частоты колебаний пьезосенсора, с учетом температуры грунта и содержания газов естественного происхождения определяют концентрацию нефтяного топлива в грунте по градуировочному графику.
Сущность изобретения заключается в том, что термометром (например, для измерения температуры грунта марки ТП-2) измеряют температуру грунта, которая оказывает значительное влияние на интенсивность эмиссии легколетучих веществ из грунтов в околосенсорное пространство. Для учета температуры грунта «на месте» предварительно в лабораторных условиях определяют температурный коэффициент эмиссии газов из грунтов методом интерполяции. Авторами установлены температурные коэффициенты миграции НТ из разных типов грунтов в интервале температур (10÷40)°С, некоторые из них приведены в таблице 1. Для изученных систем температурные коэффициенты изменяются незначительно, поэтому в таблице указаны их средние значения kср.
Сорбцию газов естественного происхождения (пары воды, продукты жизнедеятельности микроорганизмов) и паров НТ осуществляют на покрытии электродов пьезосенсора, помещенного в открытую ячейку детектирования, например, газоанализатора с открытым входом [Пат. РФ №2302627. Кучменко Т.А., Кочетова Ж.Ю., Силина Ю.Е. «Газоанализатор с открытым входом на основе пьезосенсоров», 2007]. В качестве покрытия электродов пьезосенсора применяют устойчивые и сорбционноемкие к парам НТ сорбенты, например многослойное покрытие из углеродных нанотрубок (МУНТ) [Пат. РФ №2379669. Кучменко Т.А., Шогенов Ю.Х. «Способ формирования на электродах пьезосенсоров сорбционных покрытий из углеродных нанотрубок», 2010].
Газоанализатор с открытым входом устанавливают на грунт таким образом, чтобы легколетучие соединения самопроизвольно диффундировали из грунтов в околосенсорное пространство. В результате сорбции газов на покрытии электродов пьезосенсора изменяется частота его колебаний (ΔF, Гц) пропорционально концентрации газов в околосенсорном пространстве. Изменение частоты колебаний пьезосенсора фиксируют при установлении равновесия в системе «грунт-воздух».
Сначала проводят сорбцию газов естественного происхождения (пары воды, продукты жизнедеятельности микроорганизмов и др.) над незагрязненным нефтяным топливом грунтом и фиксируют ΔFфон. Затем также сорбируют легколетучие соединения над загрязненным нефтяным топливом грунтом и фиксируют ΔF. Изменение частоты колебаний пьезосенсора, обусловленное сорбцией паров нефтяных топлив, рассчитывают как разницу двух измерений над загрязненным и незагрязненным НТ грунтом (ΔF-ΔFфон). С учетом температурного коэффициента миграции НТ из грунтов аналитический сигнал сорбции паров нефтяных топлив (ΔFHT) рассчитывают по формуле (1)
где kср - температурный коэффициент миграции газов из грунтов (табл. 1); t1 и t2 - температура анализируемого грунта и построения градуировочного графика соответственно, °С.
По градуировочным графикам вида ΔFHT=ƒ(СHT) определяют концентрацию нефтяного топлива в грунте (СНТ, мг/кг) и уровень загрязнения. В качестве примера на фигуре 1 представлены градуировочные графики для определения содержания керосина в черноземе, песке, суглинке. График зависимости аналитического сигнала от концентрации керосина в черноземе, песке и суглинке (фиг. 1) линеен при СНT от 5 до 600 мг/кг. Нижний предел рабочих концентраций обусловлен чувствительностью МУНТ к парам нефтяных топлив; верхний - сорбционной емкостью покрытия.
Делают вывод об уровне загрязнения грунта нефтяным топливом [Другов Ю.С., Родин А.А. Экологические анализы при разливах нефти и нефтепродуктов. С.-Пб.: Изд-во «Анатолия», 2000. - 250 с.]:
- незагрязненные (СНТ<5 мг/кг),
- слабозагрязненные (СНТ=5÷50 мг/кг);
- среднезагрязненные (СНТ=51÷500 мг/кг);
- сильнозагрязненные (СНT=501÷10000 мг/кг).
Способ может быть реализован, например, с применением газоанализатора [Пат. РФ №2302627. Кучменко Т.А., Кочетова Ж.Ю., Силина Ю.Е. «Газоанализатор с открытым входом на основе пьезосенсоров», 2007] на основе одного пьезосенсора. Электроды пьезосенсора модифицируют устойчивым, чувствительным и сорбционноемким к парам НТ покрытием, например многослойными углеродными нанотрубками (МУНТ) [Пат. РФ №2379669. Кучменко Т.А., Шогенов Ю.Х. «Способ формирования на электродах пьезосенсоров сорбционных покрытий из углеродных нанотрубок», 2010]. Способ реализуется следующим образом.
1. «На месте» измеряется температура грунта (например, t1=19°С). Использовали термометр для измерения температуры грунта марки ТП-2.
2. Визуально или по справочным данным [Указания по полевой документации инженерно-геологических и поисково-разведочных работ при изысканиях автомобильных дорог / М.: «СОЮЗДОРПРОЕКТ», 1971] определяют тип грунта. В качестве примера исследовали суглинок.
3. Определяют тип нефтяного топлива (например, по месту возможного разлива, по специфическому запаху). Исследовали территорию хранения и перекачки авиационного керосина.
4. Устанавливают газоанализатор на незагрязненный нефтяным топливом грунт и проводят сорбцию газов естественного происхождения (пары воды, продукты жизнедеятельности микроорганизмов и др.).
5. Фиксируют изменение частоты колебаний пьезосенсора в результате сорбции газов естественного происхождения на покрытии электродов пьезосенсора (например, ΔFфон=64 Гц).
6. Устанавливают газоанализатор на загрязненный нефтяным топливом грунт и проводят сорбцию паров нефтяного топлива и сопутствующих им газов естественного происхождения.
7. Фиксируют изменение частоты колебаний пьезосенсора в результате сорбции паров нефтяного топлива и сопутствующих им газов естественного происхождения (например, ΔF=298 Гц).
8. Рассчитывают изменение частоты колебаний пьезосенсора (ΔFHT, Гц), вызванное сорбцией паров нефтяного топлива с учетом температуры грунта и температурного коэффициента миграции газов из грунтов (табл. 1) по уравнению (1). В данном примере ΔFHT=298-64+7⋅(19-25)=186 Гц.
9. По градуировочному графику ΔFHT=ƒ(CНТ) определяют концентрацию нефтяного топлива в грунте (СНT, мг/кг). В соответствии с фигурой 1 установлена концентрация керосина в суглинке СНT=190 мг/кг.
10. Делают вывод об уровне загрязнения грунта нефтяным топливом [Другов Ю.С., Родин А.А. Экологические анализы при разливах нефти и нефтепродуктов. С.-Пб.: Изд-во «Анатолия», 2000. - 250 с.]. В данном примере СНТ соответствует интервалу загрязнений от 51 до 500 мг/кг, что свидетельствует о среднем загрязнении грунта.
Правильность и точность определения содержания нефтяных топлив в грунтах (например, керосина в черноземе) предложенным способом проверяли методом «введено-найдено» (таблица 2).
Данные таблицы показывают, что диапазон рабочих температур предлагаемого способа шире, чем способа, основанного на спектроскопии в ближней инфракрасной области, и составляет (10÷40)°С. Интервал измеряемых концентраций НТ в грунтах составляет (5÷600) мг/кг, поэтому возможна оценка слабых, средних и сильных (до 600 мг/кг) загрязнений грунтов. Погрешность определений нефтяных топлив в грунтах заявляемым способом не превышает 20%. Относительная погрешность возрастает при определении низких (СНТ≤10 мг/кг) и высоких (СНТ≥400 мг/кг) концентраций и незначительно растет с уменьшением температуры грунтов.
Длительность единичного измерения ΔF «на месте» обусловлена временем установления равновесия в системе грунт/воздух, которое зависит от природы и температуры грунта, типа нефтяного топлива. Время измерения для изученных систем изменяется в интервале от 0,5-8 мин. Оно максимально при анализе наиболее плотного и наименее пористого суглинка с температурой 10°С, загрязненного на уровне 5 мг/кг самым вязким из изученных топлив - дизельным. При загрязнении суглинка керосином в тех же условиях время измерения уменьшается в 1,5 раза. Способ осуществим.
Предложенный способ позволяет повысить мобильность и экс-прессность анализа за счет исследования грунта «на месте» в течение 10 мин без стадий пробоотбора и пробоподготовки в широком интервале температур (10÷40°С); оценивать слабые и средние загрязнения грунтов нефтяными топливами в интервале концентраций от 5 до 600 мг/кг.
название | год | авторы | номер документа |
---|---|---|---|
БЕСПИЛОТНЫЙ КОМПЛЕКС ХИМИЧЕСКОЙ РАЗВЕДКИ ГРУНТА | 2020 |
|
RU2766308C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ФЕНОЛА В ВОЗДУХЕ | 2010 |
|
RU2441231C1 |
МИНИАТЮРНАЯ ЯЧЕЙКА ДЕТЕКТИРОВАНИЯ ГАЗОВ В ПОТОКЕ | 2008 |
|
RU2374632C1 |
ПОРТАТИВНЫЙ ГАЗОАНАЛИЗАТОР | 2008 |
|
RU2408007C2 |
ГАЗОАНАЛИЗАТОР С ОТКРЫТЫМ ВХОДОМ НА ОСНОВЕ ПЬЕЗОСЕНСОРОВ | 2006 |
|
RU2302627C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОКОНЦЕНТРАЦИЙ АММИАКА | 2008 |
|
RU2363943C1 |
ПОРТАТИВНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ГАЗОВ-МАРКЕРОВ В ВЫДЫХАЕМОМ ВОЗДУХЕ | 2006 |
|
RU2324168C1 |
Устройство для экспресс-анализа качества продуктов | 2016 |
|
RU2634803C1 |
ЯЧЕЙКА ДЕТЕКТИРОВАНИЯ ГАЗОВ В ПОТОКЕ | 2023 |
|
RU2821596C1 |
СПОСОБ ТЕРМОХИМИЧЕСКОЙ ИНДИКАЦИИ УТЕЧЕК УГЛЕВОДОРОДНЫХ ТОПЛИВ В ПОЧВЕННОМ ПРОСТРАНСТВЕ | 2008 |
|
RU2368889C1 |
Использование: для определения содержания нефтяных топлив в грунтах «на месте». Сущность изобретения заключается в том, что способ определения содержания нефтяных топлив в грунтах включает определение типа грунта, определение типа нефтяного топлива, установление содержания концентрации топлива по градуировочным графикам, при этом измеряют температуру грунта, на покрытии пьезосенсора сорбируют равновесные газы естественного происхождения над незагрязненным грунтом и фиксируют изменение частоты колебаний пьезосенсора, затем также сорбируют газы над загрязненным нефтяным топливом грунтом и фиксируют изменение частоты колебаний пьезосенсора, с учетом температуры грунта и содержания газов естественного происхождения определяют концентрацию нефтяного топлива в грунте по градуировочному графику. Технический результат: обеспечение возможности повышения мобильности и экспрессности анализа за счет исследования грунта «на месте» в течение 10 мин без стадий пробоотбора и пробоподготовки в широком интервале температур (10÷40°С). 2 табл., 1 ил.
Способ определения содержания нефтяных топлив в грунтах, включающий определение типа грунта, определение типа нефтяного топлива, установление содержания концентрации топлива по градуировочным графикам, отличающийся тем, что измеряют температуру грунта, на покрытии пьезосенсора сорбируют равновесные газы естественного происхождения над незагрязненным грунтом и фиксируют изменение частоты колебаний пьезосенсора, затем также сорбируют газы над загрязненным нефтяным топливом грунтом и фиксируют изменение частоты колебаний пьезосенсора, с учетом температуры грунта и содержания газов естественного происхождения определяют концентрацию нефтяного топлива в грунте по градуировочному графику.
Околелова А.А., Рахимова Н.А., Мерзлякова А.С., Авилова В.С., Нгуен Тьен Чунг, ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ НЕФТЕПРОДУКТОВ В ПОЧВАХ ИНСТРУМЕНТАЛЬНЫМИ И ИК-СПЕКТРАЛЬНЫМИ МЕТОДАМИ, Фундаментальные исследования, N 5-1, С | |||
Способ размножения копий рисунков, текста и т.п. | 1921 |
|
SU89A1 |
СПОСОБ КОМПЛЕКСНОЙ ОЦЕНКИ ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ ПОЧВ | 2012 |
|
RU2501009C1 |
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ И ИДЕНТИФИКАЦИИ ОБЪЕКТОВ ОРГАНИЧЕСКОГО ПРОИСХОЖДЕНИЯ | 2003 |
|
RU2233438C1 |
СПОСОБ ЭКСПРЕСС-ОПРЕДЕЛЕНИЯ ЗАГРЯЗНЕНИЯ УЧАСТКОВ ПОЧВ И ПОДЗЕМНЫХ ВОД НЕФТЬЮ И НЕФТЕПРОДУКТАМИ | 2013 |
|
RU2519079C1 |
CN 101776590 A, 14.07.2010. |
Авторы
Даты
2018-04-13—Публикация
2016-06-07—Подача