СПОСОБ ПОЛУЧЕНИЯ МАЛОВЯЗКОГО СУДОВОГО ТОПЛИВА Российский патент 2018 года по МПК C10L1/04 C10L1/08 C10L1/00 

Описание патента на изобретение RU2652634C1

Изобретение относится к способам получения топлива для судовых двигателей и может быть использовано в нефтеперерабатывающей промышленности.

Топлива судовые предназначены для применения в судовых энергетических установках. В настоящее время требования к судовым топливам регламентируются межгосударственным стандартом ГОСТ 32510-2013. Известен способ получения маловязкого судового топлива, описанный в патенте РФ №2074232, путем атмосферно-вакуумной перегонки нефти с выделением фракций, каталитического крекинга вакуумного газойля, компаундирования этих фракций, в котором при атмосферно-вакуумной перегонке нефти выделяют фракции, выкипающие в интервалах 160-360, 160-420 и 300-480°C с последующим их смешиванием в массовом соотношении 40:40:20-60:30:10 с получением дистиллята прямой перегонки, а каталитическому крекингу подвергают фракцию вакуумного газойля, выкипающую в интервале 250-550°C с отделением от полученного продукта фракции, выкипающей в интервале 160-400°C, и компаундированием этой фракции с дистиллятом прямой перегонки в массовом соотношении 20:80-60:40. Недостатком известного способа является высокое содержание серы в товарном продукте - более 1,3% мас. Кроме того, в данном способе производства топлива применяется очень трудоемкий и морально устаревший процесс каталитического крекинга в движущемся слое крупногранулированного шарикового катализатора, приводящий к ухудшению качества топлива. Известен способ получения маловязкого судового топлива, описанный в патенте РФ №2232793, включающий атмосферно-вакуумную перегонку нефти с выделением прямогонных и вакуумных фракций, каталитический крекинг широкой вакуумной фракции с выделением дистиллята каталитического крекинга и компаундирование выделенных фракций с получением целевого продукта, в котором выделяют вакуумную фракцию, выкипающую в интервале 360-490°C, которую затем подвергают очистке селективным растворителем, и полученный высокоароматизированный экстракт компаундируют с прямогонными фракциями и дистиллятом каталитического крекинга в соотношениях 1:69:30-20:25:55 соответственно. Недостатком известного способа является высокое содержание серы в товарном продукте - более 1,21% мас.

Известен способ получения маловязкого судового топлива, описанный в патенте РФ №2149888, путем атмосферно-вакуумной перегонки нефти с выделением фракций, каталитического крекинга вакуумного газойля, компаундирования этих фракций, в котором при атмосферно-вакуумной перегонке выделяют фракции 155-360°C, 155-435°C, 220-500°C и 240-560°C, первые три фракции смешивают в массовом соотношении 40:55:5-55:35:10 с получением дистиллята прямой перегонки нефти, а фракцию 240-560°C подвергают гидроочистке на алюмокобальтмолибденовом катализаторе, затем каталитическому крекингу в псевдоожиженном слое микросферического катализатора с отделением от полученного продукта фракции 155-420°C при массовом соотношении в дистилляте каталитического крекинга фракции 155-325°C и фракции 325-420°C 90:10-99:1 с последующим компаундированием ее с дистиллятом прямой перегонки в массовом соотношении 15:85-65:35. Недостатком данного способа также является большое содержание общей серы.

Известен способ получения маловязкого судового топлива, описанный в патенте РФ №2213125, включающий атмосферно-вакуумную перегонку нефти с выделением фракций, каталитический крекинг вакуумного газойля, компаундирование фракций, в котором при атмосферно-вакуумной перегонке выделяют фракцию 240-500°C и подвергают ее каталитическому крекингу с получением фракции 180-350°C легкого каталитического газойля и последующим гидрированием полученной фракции на никельвольфрамовом сульфидном с добавкой окиси алюминия катализаторе с выделением из полученного гидрогенизата путем атмосферно-вакуумной перегонки фракции 195-315°C, которую смешивают с фракцией вакуумного газойля или термогазойля в соотношении 99:1-75:25 мас. % соответственно или фракцию 195-315°C смешивают с фракцией 180-350°C легкого каталитического газойля или с фракцией 180-350°C легкого коксового газойля в соотношении 99:1-60:40 мас. % соответственно или с печным бытовым топливом в соотношении 99:1-50:50 мас. % соответственно, затем в смесь дополнительно вводят композицию антиокислительной и противоизносной присадок в количестве 0,002-0,004 мас. % каждой. Недостатком данного способа также является повышенное содержание общей серы.

Известен способ получения маловязкого судового топлива, описанный в патенте РФ №2596868, включающий атмосферно-вакуумную перегонку нефти с выделением фракций, гидроочистку, каталитический крекинг, компаундирование фракций, введение присадки в полученную смесь, при этом при атмосферно-вакуумной перегонке выделяют фракцию вакуумного газойля 240-560°C, которую подвергают гидроочистке на сульфидированном алюмокобальтмолибденовом катализаторе с выделением фракций дизельного топлива 216-358°C и гидроочищенного вакуумного газойля 325-548°C (ГОВГ), с последующим каталитическим крекингом ГОВГ и выделением фракции легкого газойля каталитического крекинга 219-357°C; далее осуществляют компаундирование фракций дизельного топлива, ГОВГ и фракции легкого газойля каталитического крекинга в соотношении 75-83:2-6:15-19% соответственно, вводят депрессорно-диспергирующую присадку в количестве 0,06% мас. Данный способ позволяет получить маловязкое судовое топливо с низким содержанием общей серы.

Задачей предлагаемого технического решения является разработка способа получения маловязкого судового топлива, отвечающего требованиям межгосударственного стандарта ГОСТ 32510-2013 и одновременно обеспечивающего расширение сырьевых ресурсов и улучшение физико-химических характеристик.

Для решения поставленной задачи предлагается способ получения маловязкого судового топлива, включающий атмосферно-вакуумную перегонку нефти с выделением фракций, каталитический гидрокрекинг нефтяного сырья, компаундирование фракций, введение депрессорной присадки в полученную смесь, отличающийся тем, что осуществляют компаундирование фракций прямогонного дизельного топлива 180-360°C и остатка гидрокрекинга в соотношении 65-70:35-30% соответственно, вводят депрессорно-диспергирующую присадку в количестве 0,02-0,08% мас. Данный способ позволяет получить маловязкое судовое топливо с содержанием серы не более 0,2% мас.

Для получения маловязкого судового топлива с содержанием серы не более 10 ppm (0,0010% мас.) прямогонные фракции, выкипающие в интервале 180-360°C, подвергают дополнительной гидроочистке на сульфидированном алюмокобальтмолибденовом или алюмоникельмолибденовом катализаторе и далее осуществляют компаундирование гидроочищенных фракций дизельного топлива и остатка гидрокрекинга в соотношении 60-65:40-35% соответственно, вводят депрессорно-диспергирующую присадку в количестве 0,02-0,08% мас.

Предлагаемый способ осуществляется следующим образом. В процессе атмосферно-вакуумной перегонки нефти получают широкую фракцию вакуумного газойля 320-460°C. Эту фракцию смешивают с тяжелым газойлем замедленного коксования, остатками маслоблока (петролатум, экстракты установок селективной очистки масел) и далее смесевое сырье направляют на установку каталитического гидрокрекинга высокого давления. Процесс гидрокрекинга осуществляют на сульфидированном алюмоникельмолибденовом катализаторе при следующих параметрах:

Парциальное давление водорода - 13,0-13,8 МПа;

Температура - 380÷430°C;

Объемная скорость подачи сырья - 0,5÷1,5 час-1;

Расход циркулирующего газа - 360000-800000 нм3/час;

Кратность циркуляции водородсодержащий газ:сырье - мин. 1584 нм33;

Содержание водорода в циркуляционном газе - 94÷98 об. %.

Гидрокрекинг нефтяного сырья позволяет получить остаток гидрокрекинга с качественными характеристиками, указанными в таблице 1, являющийся компонентом маловязкого судового топлива.

Для получения второго основного компонента маловязкого судового топлива в процессе атмосферно-вакуумной перегонки нефти получают дизельные фракции 180-360°C, с качественными характеристиками, указанными в таблице 2.

Для варианта вовлечения в состав маловязкого судового топлива гидроочищенных дизельных фракций прямогонные дизельные фракции подвергают гидроочистке на сульфидированном алюмокобальтмолибденовом или алюмоникельмолибденовом катализаторе при следующих параметрах:

Парциальное давление водорода - 3,2-4,2 МПа;

Температура - 328÷410°C;

Объемная скорость подачи сырья - 0,55÷0,86 час-1;

Расход циркулирующего газа - 44000÷50000 нм3/час;

Кратность циркуляции водородсодержащий газ:сырье - 195-230 нм33;

Содержание водорода в циркуляционном газе - 84÷99 об. %.

Гидроочистка прямогонных дизельных фракций позволяет получить гидроочищенный продукт с характеристиками, указанными в таблице 3.

Таким образом, для получения маловязкого судового топлива смешивают фракции прямогонного дизельного топлива с установок атмосферно-вакуумной перегонки нефти и остаток гидрокрекинга с установки каталитического гидрокрекинга нефтяного сырья в соотношении 65-70:35-30% мас. Для улучшения низкотемпературных свойств топлива в композицию вводят депрессорно-диспергирующую присадку в количестве 0,02-0,08% мас.

Для варианта вовлечения в состав маловязкого судового топлива гидроочищенных дизельных фракций осуществляют компаундирование гидроочищенных фракций дизельного топлива и остатка гидрокрекинга в соотношении 60-65:40-35% мас. соответственно и вводят депрессорно-диспергирующую присадку в количестве 0,02-0,08% мас.

Данное соотношение компонентов, полученное эмпирическим путем, позволяет выпускать топливо маловязкое судовое топливо, обладающее наилучшими показателями качества в соответствии с ГОСТ 32510-2013, а также разработанном на предприятии СТО 00044434-031-2014, который позволяет удовлетворить требования потребителей по низкому содержанию серы в топливе. Содержание серы в разрабатываемом топливе допускается не более 0,2% мас. при существующей норме по ГОСТ 32510-2013 не более 1,5% мас. Предлагаемый способ иллюстрируется примерами, компонентный состав представлен в таблице 4, в таблице 5 - показатели качества.

Уменьшение содержания остатка гидрокрекинга ниже 30% мас. приводит к снижению кинематической вязкости. Увеличение содержания более 40% мас. остатка гидрокрекинга приводит к повышению температуры застывания, что приводит к необходимости увеличения вовлечения депрессорно-диспергирующей присадки выше установленной нормы. Норма присадки в 0,02-0,08% мас. определена экономической целесообразностью. Увеличение количества дизельных фракций более 80% мас. приводит к несоответствию показателя кинематической вязкости по ГОСТ 32510-2013 и СТО 00044434-031-2014.

Пример 1

Нефть подвергают атмосферно-вакуумной перегонке, выделяют фракцию вакуумного газойля 320-460°C и фракцию прямогонного дизельного топлива 180-360°C. Фракцию вакуумного газойля 320-460°C смешивают с тяжелым газойлем замедленного коксования, остатками маслоблока (петролатум, экстракты установок селективной очистки масел) и далее осуществляют гидрокрекинг смесевого сырья на сульфидированном алюмоникельмолибденовом катализаторе. Процесс гидрокрекинга осуществляют при технологических параметрах, приведенных в описании. Полученные прямогонную дизельную фракцию установок АВТ и остаток гидрокрекинга смешивают в следующих соотношениях: 65% мас. прямогонного дизельного топлива с АВТ, 35% мас. остатка гидрокрекинга. Полученное топливо имеет кинематическую вязкость при 20°C - 10,46 сСт, что соответствует СТО 00044434-031-2014.

Пример 2

Аналогично примеру 1 выделяют фракцию прямогонного дизельного топлива с установок АВТ, остаток с установки гидрокрекинга и смешивают их в соотношении 70:30% мас. соответственно. Полученное топливо имеет низкую кинематическую вязкость при 20°C - 9,445, что соответствует СТО 00044434-031-2014.

Пример 3

Аналогично примеру 1 на установке АВТ выделяют фракцию дизельного топлива, подвергают ее гидроочистке на алюмокобальтмолибденовом или алюмоникельмолибденовом катализаторе установки гидроочистки дизельного топлива, остаток установки гидрокрекинга, и смешивают их в соотношении 65:35% мас. соответственно. Для получения топлива, соответствующего требованиям СТО 00044434-031-2014 по показателю температура застывания, добавляют в образец депрессорно-диспергирующую присадку в количестве 0,02-0,08% мас. Температура застывания топлива составляет минус 14°C, что соответствует требованиям ГОСТ 32510-2013 и СТО 00044434-031-2014.

Пример 4

Аналогично примеру 3 выделяют фракцию дизельного топлива, подвергают ее гидроочистке на установке гидроочистки дизельного топлива, остаток установки гидрокрекинга, смешивают их в соотношении 60:40% мас. соответственно. Добавляют депрессорно-диспергирующую присадку «Dodiflow» в количестве 0,02-0,08% мас. Данное количество присадки обеспечивает температуру застывания топлива не выше минус 10°C, что соответствует требованиям ГОСТ 32510-2013 и СТО 00044434-031-2014 и является экономически обоснованным.

Похожие патенты RU2652634C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2015
  • Коваленко Алексей Николаевич
  • Гришин Владимир Валентинович
  • Сычев Андрей Геннадьевич
  • Васильев Герман Григорьевич
  • Абрамов Дмитрий Петрович
  • Зинин Дмитрий Владимирович
  • Зинин Владимир Дмитриевич
  • Рассадин Олег Владимирович
RU2596868C1
СПОСОБ ПОЛУЧЕНИЯ СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2017
  • Каримов Айрат Азатович
  • Давлетшин Марат Рашитович
  • Файрузов Данис Хасанович
  • Хабибуллин Азамат Мансурович
  • Никифоров Николай Николаевич
  • Губайдуллин Ринат Фанисович
  • Алябьев Андрей Степанович
  • Спащенко Артем Юрьевич
  • Александрова Кристина Викторовна
RU2646225C1
СПОСОБ ПОЛУЧЕНИЯ СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2019
  • Кондрашева Наталья Константиновна
  • Смышляева Ксения Игоревна
  • Рудко Вячеслав Алексеевич
RU2723115C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 2015
  • Попов Юрий Валентинович
  • Белов Олег Александрович
  • Товышев Павел Александрович
RU2569686C1
СПОСОБ ПОЛУЧЕНИЯ СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2014
  • Кондрашева Наталья Константиновна
  • Рудко Вячеслав Алексеевич
  • Шайдулина Алина Азатовна
  • Кондрашов Дмитрий Олегович
RU2570647C1
Судовое маловязкое топливо 2019
  • Артемьева Жанна Николаевна
  • Дьячкова Светлана Георгиевна
  • Кузора Игорь Евгеньевич
RU2723633C1
СПОСОБ ПОЛУЧЕНИЯ ЗИМНЕГО ДИЗЕЛЬНОГО ТОПЛИВА 1998
  • Кубрин Ю.Г.
  • Лядин Н.М.
  • Тархов В.А.
  • Рабинович Г.Б.
  • Пронин Н.В.
  • Борисов В.П.
  • Митусова Т.Н.
  • Пережигина И.Я.
RU2126437C1
СУДОВОЕ ТОПЛИВО (ВАРИАНТЫ) 2019
  • Митусова Тамара Никитовна
  • Хавкин Всеволод Артурович
  • Лобашова Марина Михайловна
  • Гуляева Людмила Алексеевна
  • Шмелькова Ольга Ивановна
  • Ершов Михаил Александрович
  • Никульшин Павел Анатольевич
  • Бобкова Марина Викторовна
  • Зубо Татьяна Алексеевна
  • Титаренко Марина Андреевна
RU2740906C1
ТОПЛИВНАЯ КОМПОЗИЦИЯ 2000
  • Васильев Р.Л.
  • Пендюхов Е.П.
  • Митусова Т.Н.
  • Пугач И.А.
  • Гешеле В.Э.
  • Лукк А.Ю.
  • Кривченков И.Т.
RU2154665C1
КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ СУДОВЫХ ВЫСОКОВЯЗКИХ ТОПЛИВ И НЕФТЯНОГО КОКСА 2015
  • Кондрашева Наталья Константиновна
  • Рудко Вячеслав Алексеевич
  • Кондрашев Дмитрий Олегович
  • Шайдулина Алина Азатовна
RU2601744C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ МАЛОВЯЗКОГО СУДОВОГО ТОПЛИВА

Изобретение раскрывает способ получения маловязкого судового топлива, включающий атмосферно-вакуумную перегонку нефти с выделением фракций, каталитический гидрокрекинг нефтяного сырья, компаундирование фракций, введение присадки в полученную смесь, при этом осуществляют компаундирование фракций прямогонного дизельного топлива 180-360°C и остатка гидрокрекинга в соотношении 65-70:35-30% и введение депрессорно-диспергирующей присадки в количестве 0,02-0,08% мас. Технический результат заключается в получении маловязкого судового топлива, отвечающего требованиям ГОСТ 32510-2013 и одновременно обеспечивающего расширение сырьевых ресурсов и улучшение физико-химических характеристик. 1 з.п. ф-лы, 5 табл., 4 пр.

Формула изобретения RU 2 652 634 C1

1. Способ получения маловязкого судового топлива, включающий атмосферно-вакуумную перегонку нефти с выделением фракций, каталитический гидрокрекинг нефтяного сырья, компаундирование фракций, введение депрессорной присадки в полученную смесь, отличающийся тем, что осуществляют компаундирование фракций прямогонного дизельного топлива 180-360°С и остатка гидрокрекинга в соотношении 65-70:35-30% соответственно, вводят депрессорно-диспергирующую присадку в количестве 0,02-0,08% мас.

2. Способ по п. 1, отличающийся тем, что прямогонные фракции, выкипающие в интервале 180-360°С, подвергают дополнительной гидроочистке на сульфидированном алюмокобальтмолибденовом или алюмоникельмолибденовом катализаторе и далее осуществляют компаундирование гидроочищенных фракций дизельного топлива и остатка гидрокрекинга в соотношении 60-65:40-35% соответственно, вводят депрессорно-диспергирующую присадку в количестве 0,02-0,08% мас.

Документы, цитированные в отчете о поиске Патент 2018 года RU2652634C1

ТОПЛИВНАЯ КОМПОЗИЦИЯ ФЛОТСКОГО МАЗУТА (ВАРИАНТЫ) 2015
  • Шуверов Владимир Михайлович
  • Ширкунов Антон Сергеевич
  • Юхнев Владимир Анатольевич
  • Середа Владимир Васильевич
RU2581034C1
СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2002
  • Кондрашева Н.К.
  • Семёнов В.М.
  • Кондрашев Д.О.
  • Безруков А.В.
RU2213125C1
СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2015
  • Коваленко Алексей Николаевич
  • Гришин Владимир Валентинович
  • Сычев Андрей Геннадьевич
  • Васильев Герман Григорьевич
  • Абрамов Дмитрий Петрович
  • Зинин Дмитрий Владимирович
  • Зинин Владимир Дмитриевич
  • Рассадин Олег Владимирович
RU2596868C1
СПОСОБ ПОЛУЧЕНИЯ МАЛОВЯЗКОГО СУДОВОГО ТОПЛИВА 2003
  • Большаков В.Ф.
  • Козлов В.Н.
  • Большаков А.В.
  • Митусова Т.Н.
  • Шинков С.О.
  • Князиков А.С.
  • Жуков В.К.
  • Шевченко В.Н.
  • Овчинникова Т.Ф.
  • Вугин И.Р.
  • Гончаров П.С.
RU2232793C1
СУДОВОЕ МАЛОВЯЗКОЕ ТОПЛИВО 1992
  • Овчинникова Т.Ф.
  • Николаева В.Б.
  • Пережигина И.Я.
  • Митусова Т.Н.
  • Заяшников Е.Н.
  • Хвостенко Н.Н.
  • Прокофьев В.П.
  • Евтушенко В.М.
  • Соломахина Л.С.
  • Крылов В.В.
RU2041245C1
US 20150353851 A1, 10.12.2015.

RU 2 652 634 C1

Авторы

Чернов Владислав Васильевич

Комарова Алла Валерьевна

Пашкин Роман Евгеньевич

Волобоев Сергей Николаевич

Ткаченко Алексей Михайлович

Кислицкий Константин Анатольевич

Мухин Алексей Федорович

Даты

2018-04-28Публикация

2017-07-18Подача