СПОСОБ ПОЛУЧЕНИЯ СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА Российский патент 2020 года по МПК C10L1/00 

Описание патента на изобретение RU2723115C1

Изобретение относится к нефтеперерабатывающей промышленности и к способам получения топлив для судовых среднеоборотных и высокооборотных двигателей процессами вакуумной перегонки и гидрокрекинга с улучшенными низкотемпературными свойствами.

Известен способ получения маловязкого судового топлива для среднеоборотных и высокооборотных дизельных двигателей (патент РФ №2076138, опубл. 15.02.1995). В предлагаемой композиции в качестве дистиллятов прямой перегонки нефти используют фракцию атмосферного газойля 240-450°С, фракцию первого вакуумного погона 200-400°С, в качестве дистиллятов коксования - фракцию 160-400°С, в качестве дистиллятов каталитического крекинга - фракцию газойля каталитического крекинга 180-400°С в соотношении, % масс.:

Атмосферный газойль 240-450°С 5-15 Вакуумный погон 200-400°С 5-25 Газойль коксования 160-400°С 5-30 Газойль каталитического крекинга 180-400°С 5-60 Дизельная фракция 160-360°С до 100

Недостатками являются высокие плотность и вязкость полученной композиции, что приводит к увеличению расхода топлива и к снижению целесообразности его применения, а также повышенное содержание сернистых соединений (до 1,24% масс.) и высокое содержание дизельной фракции, что уменьшает ресурсы дизельного топлива.

Известно судовое маловязкое топливо (патент РФ №2149888, опубл. 27.05.2000), получаемое путем атмосферно-вакуумной перегонки нефти с выделением фракций, каталитического крекинга вакуумного газойля, компаундирования этих фракций, в котором при атмосферно-вакуумной перегонке выделяют фракции 155-360°С, 155-435°С, 220-500°С и 240-560°С, первые три фракции смешивают в массовом соотношении 40:55:5-55:35:10 с получением дистиллята прямой перегонки нефти, а фракцию 240-560°С подвергают гидроочистке на алюмокобальтмолибденовом катализаторе, затем каталитическому крекингу в псевдоожиженном слое микросферического катализатора с отделением от полученного продукта фракции 155-420°С при массовом соотношении в дистилляте каталитического крекинга фракции 155-325°С и фракции 325-420°С 90:10-99:1 с последующим компаундированием ее с дистиллятом прямой перегонки в соотношении, % масс:

Дистиллят прямой перегонки нефти 155-550°С 35-85 Дистиллят каталитического крекинга 155-420°С 15-65

Недостатком данного способа является содержание общей серы свыше 0,96% и использование в составе топлива судового маловязкого прямогонной дизельной фракции в количестве от 35 до 85%, что снижает объемы производства товарного дизельного топлива.

Известно судовое маловязкое топливо (патент РФ №2478692, опубл. 10.04.2013), включающее смесь дистиллятов атмосферной и вакуумной перегонки нефти. Топливо характеризуется тем, что оно содержит фракцию атмосферной перегонки с интервалом выкипания 210-365°С и фракцию вакуумной перегонки с интервалом выкипания 255-360°С при следующем массовом соотношении компонентов, % масс.:

Фракция атмосферной перегонки 210-365°С 60-70 Фракция вакуумной перегонки 255-360°С до 100

Недостатком данного топлива является повышенное содержание серы (0,9%), которое ведет к увеличению выбросов ее оксидов при сгорании в атмосферу, а также не высокие низкотемпературные характеристики (минимальная температура застывания составляет - 15°С).

Известен способ получения судового маловязкого топлива на нефтеперерабатывающих предприятиях (Патент РФ №2074232, опубл. 31.08.1995), нефть подвергают перегонке на установке AT (атмосферной трубчатки) или АВТ (атмосферно-вакуумной трубчатки) с выделением фракции: 160-360°С, 160-420°С и 300-480°С, с последующим их смешиванием в массовом соотношении 40:40:20-60:30:10, с получением дистиллята прямой перегонки; фракцию 250-550°С, получаемую на АВТ, подвергают каталитическому крекингу на специальном цеолитсодержащем катализаторе типа «ЕМКАТ» на установке Г-43/102. Из катализата выделяют фракцию 160-400°С и компаундируют ее с дистиллятом прямой перегонки в соотношении 20:80-60:40.

Недостатком данного способа производства судового маловязкого топлива является использование легких фракций прямой перегонки нефти 160-360°С и каталитического крекинга 160-400°С, что приводит к снижению температуры вспышки, цетанового числа, теплоты сгорания и смазочной способности топлива. Кроме того полученное данным способом топливо имеет повышенное содержание серы от 1,3 до 1,5%.

Известно судовое маловязкое топливо (патент РФ №2570647, опубл. 10.12.2015 г.), принятое за прототип, включающее перегонку нефти с выделением дизельной фракции и каталитическую гидроочистку. Причем при перегонке нефти выделяют фракции, 95% которых выкипают в пределах от 180 до 220°С и от 220 до 360°С, эти фракции смешивают в балансовом соотношении с получением фракции от 180 до 360°С, также выделяют фракцию вакуумного газойля от 360 до 500°С и гудрон - фракцию, выкипающую выше 500°С, при этом каталитическому крекингу подвергают фракцию вакуумного газойля от 360 до 500°С, предварительно подвергнутую каталитической гидроочистке, а замедленному коксованию гудрон - фракцию, выкипающую выше 500°С, с выделением из продуктов реакций перечисленных вторичных процессов легких газойлевых фракций от 180 до 360°С и последующим компаундированием прямогонной дизельной фракции (ПДФ) от 180 до 360°С, легких газойлей замедленного коксования (ЛГЗК) и каталитического крекинга (ЛГКК) от 180 до 360°С, взятых в их массовом соотношении (% масс.):

Прямогонная дизельная фракция 30-50 Легкий газойль каталитического крекинга 20-60 Легкий газойль замедленного коксования 10-50

Недостатками предложенного состава является повышенное содержание серы (0,79-1,40% масс.) из-за высокого ее содержания в одном из компонентов - легком газойле коксования, что приводит к увеличению выбросов оксидов серы при сгорании в атмосферу, а также низкое цетановое число (ниже 40). Кроме того использование легких газойлей термодеструктивных процессов в качестве компонентов судового маловязкого топлива приводит к снижению стабильности к окислению за счет повышенного содержания олефиновых углеводородов.

Техническим результатом является получение судового маловязкого топлива с улучшенными низкотемпературными свойствами процессами вакуумной перегонки и гидрокрекинга с добавлением депрессорно-диспергирующей присадки.

Технический результат достигается тем, что при перегонке нефти выделяют фракции легкого вакуумного газойля, выкипающего при температуре от 290 до 430°С и тяжелого вакуумного газойля, выкипающего при температуре от 430 до 550°С, затем смешивают их в массовом соотношении 30-40:60-70 и подвергают гидрокрекингу в стационарном слое алюмосиликат-никельмолибденового катализатора при температуре от 340 до 390°С и давлении от 15,6 до 17,1 МПа, с выделением дизельной фракции гидрокрекинга, выкипающей при температуре от 200 до 360°С, и компаундированием дизельной фракции гидрокрекинга и легкого вакуумного газойля взятых в их массовом соотношении:

Дизельная фракция гидрокрекинга 35-80 Легкий вакуумный газойль 20-65

в качестве депрессорно-диспергирующей присадки используют смесь, состоящую на 10% масс. из сополимера этилена с винилацетатом, на 20% масс. из амидоимидазолина и на 70% масс. из толуола, в количестве от 0,01 до 0,50% масс.

Способ осуществляется следующим образом. Нефть на установке АВТ (атмосферной и вакуумной трубчатки) подвергают перегонке при давлении 8 кПа и температуре питания 390-395°С. В результате выделяют легкий вакуумный газойль (ЛВГО), выкипающий в интервале температур от 290 до 430°С, и тяжелый вакуумный газойль (ТВГО), выкипающий от 430 до 550°С (табл. 1).

Затем, ЛВГО и ТВГО смешивают в массовом соотношении 30-40: 60-70. Полученную смесь подвергают гидрокрекингу на стационарном слое алюмосиликатникельмолибденового катализатора при температуре от 340 до 390°С и давлении от 15,6 до 17,1 МПа, с выделением дизельной фракции гидрокрекинга (ДФГК), выкипающего при температуре от 200 до 360°С.Компаундирование дизельной фракции гидрокрекинга и легкого вакуумного газойля взятых в их массовом соотношении:

Дизельная фракция гидрокрекинга 35-80 Легкий вакуумный газойль 20-65

в качестве депрессорно-диспергирующей присадки используют смесь, состоящую на 10% масс. из сополимера этилена с винилацетатом, на 20% масс. из амидоимидазолина и на 70% масс. из толуола, в количестве от 0,01 до 0,50% масс. (табл. 2).

Из представленных данных видно, что предлагаемый способ получения судового маловязкого топлива для высокооборотных и среднеоборотных судовых дизелей и энергетических установок позволяет при добавлении депрессорно-диспергирующей присадки в количестве от 0,01 до 0,50% масс. получить судовое топливо с улучшенными низкотемпературными свойствами, температура застывания которого, в зависимости от компонентного состава, при добавлении присадки снижается до минус 47°С.При получении судового маловязкого топлива по предлагаемой технологии наиболее полно используются ресурсы легкого вакуумного газойля одновременно с возможностью удовлетворения экологических требований в соответствии с ГОСТ 32510-2013. Судовое маловязкое топливо по предлагаемой технологии получают с низким содержанием серы от 0,298 до 0,959% масс.

Способ поясняется следующими примерами.

Пример 1. Нефть на установке АВТ подвергают перегонке с выделением легкого вакуумного газойля, выкипающего от 290 до 430°С, и тяжелого вакуумного газойля, выкипающего от 430 до 550°С. Затем, смесь ЛВГО и ТВГО, взятую в массовом соотношении 30-40: 60-70 подвергают гидрокрекингу на стационарном слое алюмосиликатникельмолибденового катализатора при температуре от 340 до 390°С и давлении 15,6-17,1 МПа, с выделением из продуктов реакций дизельной фракции, выкипающей от 200 до 360°С. Дизельную фракцию гидрокрекинга, выкипающую при температуре от 200 до 360°С, и легкий вакуумный газойль, выкипающий при температуре от 290 до 430°С, компаундируют в массовом соотношении 35:65.

В полученную смесь вводят 0,010, 0,025, 0,050, 0,100, 0,200, 0,400 и 0,500% масс. присадки, представляющей собой смесь, состоящую на 10% масс, из сополимера этилена с винилацетатом, на 20% масс. из амидоимидазолина и на 70% масс. из толуола, снижающей температуру застывания с плюс 6°С соответственно до 0, минус 14, минус 20, минус 24, минус 37, минус 45 и минус 47°С.

Полученная в данном соотношении (35:65) базовая смесь ДФГК и ЛВГО по физико-химическим показателям отвечает предъявляемым требованиям к судовому маловязкому топливу (табл. 2).

Пример 2. Нефть на установке АВТ подвергают перегонке с выделением легкого вакуумного газойля, выкипающего от 290 до 430°С, и тяжелого вакуумного газойля, выкипающего от 430 до 550°С. Затем, смесь ЛВГО и ТВГО, взятую в массовом соотношении 30-40:60-70 подвергают гидрокрекингу на стационарном слое алюмосиликатникельмолибденового катализатора при температуре от 340 до 390°С и давлении от 15,6 до 17,1 МПа, с выделением из продуктов реакций дизельной фракции, выкипающей от 200 до 360°С. Дизельную фракцию гидрокрекинга, выкипающую при температуре от 200 до 360°С, и легкий вакуумный газойль, выкипающий при температуре от 290 до 430°С, компаундируют в массовом соотношении 50:50.

В полученную смесь вводят 0,010, 0,025, 0,050, 0,100, 0,200, 0,400 и 0,500% масс. присадки, представляющей собой смесь, состоящую на 10% масс. из сополимера этилена с винилацетатом, на 20% масс, из амидоимидазолина и на 70% масс. из толуола, снижающей температуру застывания с минус 1°С соответственно до минус 3, минус 15, минус 21, минус 27, минус 37, минус 43 и минус 47°С.

Полученная в данном соотношении (50:50) базовая смесь ДФГК и ЛВГО по физико-химическим показателям отвечает предъявляемым требованиям к судовому маловязкому топливу (табл. 2).

Пример 3. Нефть на установке АВТ подвергают перегонке с выделением легкого вакуумного газойля, выкипающего от 290 до 430°С, и тяжелого вакуумного газойля, выкипающего от 430 до 550°С. Затем, смесь ЛВГО и ТВГО, взятую в массовом соотношении 30-40: 60-70 подвергают гидрокрекингу на стационарном слое алюмосиликатникельмолибденового катализатора при температуре от 340 до 390°С и давлении от 15,6 до 17,1 МПа, с выделением из продуктов реакций дизельной фракции, выкипающей от 200 до 360°С. Дизельную фракцию гидрокрекинга, выкипающую при температуре от 200 до 360°С, и легкий вакуумный газойль, выкипающий при температуре от 290 до 430°С, компаундируют в массовом соотношении 65:35.

В полученную смесь вводят 0,010, 0,025, 0,050, 0,100, 0,200, 0,400 и 0,500% масс. присадки, представляющей собой смесь, состоящую на 10% масс. из сополимера этилена с винилацетатом, на 20% масс. из амидоимидазолина и на 70% масс. из толуола, снижающей температуру застывания с плюс 1°С соответственно до минус 4, минус 16, минус 25, минус 31, минус 41, минус 45 и минус 47°С.

Полученная в данном соотношении (65:35) базовая смесь ДФГК и ЛВГО по физико-химическим показателям отвечает предъявляемым требованиям к судовому маловязкому топливу (табл. 2).

Пример 4. Нефть на установке АВТ подвергают перегонке с выделением легкого вакуумного газойля, выкипающего от 290 до 430°С, и тяжелого вакуумного газойля, выкипающего от 430 до 550°С. Затем, смесь ЛВГО и ТВГО, взятую в массовом соотношении 30-40: 60-70 подвергают гидрокрекингу на стационарном слое алюмосиликатникельмолибденового катализатора при температуре от 340 до 390°С и давлении от 15,6 до 17,1 МПа, с выделением из продуктов реакций дизельной фракции, выкипающей от 200 до 360°С. Дизельную фракцию гидрокрекинга, выкипающую при температуре от 200 до 360°С, и легкий вакуумный газойль, выкипающий при температуре от 290 до 430°С, компаундируют в массовом соотношении 70:30.

В полученную смесь вводят 0,010, 0,025, 0,050, 0,100, 0,200, 0,400 и 0,500% масс. присадки, представляющей собой смесь, состоящую на 10% масс. из сополимера этилена с винилацетатом, на 20% масс, из амидоимидазолина и на 70% масс. из толуола, снижающей температуру застывания с плюс 1°С соответственно до минус 6, минус 16, минус 25, минус 32, минус 41, минус 45 и минус 47°С.

Полученная в данном соотношении (70:30) базовая смесь ДФГК и ЛВГО по физико-химическим показателям отвечает предъявляемым требованиям к судовому маловязкому топливу (табл. 2).

Пример 5. Нефть на установке АВТ подвергают перегонке с выделением легкого вакуумного газойля, выкипающего от 290 до 430°С, и тяжелого вакуумного газойля, выкипающего от 430 до 550°С. Затем, смесь ЛВГО и ТВГО, взятую в массовом соотношении 30-40: 60-70 подвергают гидрокрекингу на стационарном слое алюмосиликатникельмолибденового катализатора при температуре от 340 до 390°С и давлении от 15,6 до 17,1 МПа, с выделением из продуктов реакций дизельной фракции, выкипающей от 200 до 360°С. Дизельную фракцию гидрокрекинга, выкипающую при температуре от 200 до 360°С, и легкий вакуумный газойль, выкипающий при температуре от 290 до 430°С, компаундируют в массовом соотношении 80:20.

В полученную смесь вводят 0,010, 0,025, 0,050, 0,100, 0,200, 0,400 и 0,500% масс. присадки, представляющей собой смесь, состоящую на 10% масс. из сополимера этилена с винилацетатом, на 20% масс, из амидоимидазолина и на 70% масс. из толуола, снижающей температуру застывания с минус 5°С соответственно до минус 9, минус 17, минус 27, минус 31, минус 41, минус 47 и минус 47°С.

Полученная в данном соотношении (80:20) базовая смесь ДФГК и ЛВГО по физико-химическим показателям отвечает предъявляемым требованиям к судовому маловязкому топливу (табл. 2).

Предлагаемая технология способа получения судовых маловязких топлив с улучшенными низкотемпературными свойствами для высокооборотных и среднеоборотных судовых дизельных и энергетических установок найдет широкое применение для производства на НПЗ с глубокой переработкой нефтяного сырья.

Похожие патенты RU2723115C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МАЛОВЯЗКОГО СУДОВОГО ТОПЛИВА 2017
  • Чернов Владислав Васильевич
  • Комарова Алла Валерьевна
  • Пашкин Роман Евгеньевич
  • Волобоев Сергей Николаевич
  • Ткаченко Алексей Михайлович
  • Кислицкий Константин Анатольевич
  • Мухин Алексей Федорович
RU2652634C1
СПОСОБ ПОЛУЧЕНИЯ СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2014
  • Кондрашева Наталья Константиновна
  • Рудко Вячеслав Алексеевич
  • Шайдулина Алина Азатовна
  • Кондрашов Дмитрий Олегович
RU2570647C1
СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2015
  • Коваленко Алексей Николаевич
  • Гришин Владимир Валентинович
  • Сычев Андрей Геннадьевич
  • Васильев Герман Григорьевич
  • Абрамов Дмитрий Петрович
  • Зинин Дмитрий Владимирович
  • Зинин Владимир Дмитриевич
  • Рассадин Олег Владимирович
RU2596868C1
Судовое маловязкое топливо 2019
  • Артемьева Жанна Николаевна
  • Дьячкова Светлана Георгиевна
  • Кузора Игорь Евгеньевич
RU2723633C1
Топливо маловязкое судовое 2020
  • Дьячкова Светлана Георгиевна
  • Кузора Игорь Евгеньевич
  • Артемьева Жанна Николаевна
  • Швалев Егор Евгеньевич
RU2734259C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 2015
  • Попов Юрий Валентинович
  • Белов Олег Александрович
  • Товышев Павел Александрович
RU2569686C1
ТОПЛИВНАЯ КОМПОЗИЦИЯ ДЛЯ ВОДОИЗМЕЩАЮЩИХ КОРАБЛЕЙ 2012
  • Бугай Владимир Тимофеевич
  • Саутенко Алексей Александрович
  • Фахрутдинов Марат Иматдинович
RU2496855C1
СПОСОБ ПОЛУЧЕНИЯ ВСЕСЕЗОННОГО УНИФИЦИРОВАННОГО ДИЗЕЛЬНОГО ТОПЛИВА 2018
  • Шарин Евгений Алексеевич
  • Лунева Вера Всеволодовна
  • Середа Василий Александрович
RU2673558C1
ТОПЛИВНАЯ КОМПОЗИЦИЯ ФЛОТСКОГО МАЗУТА 2021
  • Волобоев Сергей Николаевич
  • Ткаченко Алексей Михайлович
  • Иванов Александр Петрович
  • Наумов Павел Анатольевич
  • Пашкин Максим Игоревич
  • Голузинец Иван Ярославович
RU2778518C1
СПОСОБ ПОЛУЧЕНИЯ СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2017
  • Каримов Айрат Азатович
  • Давлетшин Марат Рашитович
  • Файрузов Данис Хасанович
  • Хабибуллин Азамат Мансурович
  • Никифоров Николай Николаевич
  • Губайдуллин Ринат Фанисович
  • Алябьев Андрей Степанович
  • Спащенко Артем Юрьевич
  • Александрова Кристина Викторовна
RU2646225C1

Реферат патента 2020 года СПОСОБ ПОЛУЧЕНИЯ СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА

Изобретение относится к способу получения судового маловязкого топлива и может быть использовано в нефтеперерабатывающей промышленности. Способ включает перегонку нефти с выделением фракции вакуумного газойля с добавлением присадки и отличается тем, что при перегонке нефти выделяют фракции легкого вакуумного газойля, выкипающего при температуре от 290 до 430°С, и тяжелого вакуумного газойля, выкипающего при температуре от 430 до 550°С, затем смешивают их в массовом соотношении 30-40:60-70 и подвергают гидрокрекингу в стационарном слое алюмосиликат-никельмолибденового катализатора при температуре от 340 до 390°С и давлении от 15,6 до 17,1 МПа, с выделением дизельной фракции гидрокрекинга, выкипающей при температуре от 200 до 360°С, и компаундированием дизельной фракции гидрокрекинга и легкого вакуумного газойля, взятых в их массовом соотношении: дизельная фракция гидрокрекинга 35-80 и легкий вакуумный газойль 20-65, в качестве депрессорно-диспергирующей присадки используют смесь, состоящую на 10 мас.% из сополимера этилена с винилацетатом, на 20 мас.% из амидоимидазолина и на 70 мас.% из толуола, в количестве от 0,01 до 0,50 мас.%. Предложен новый способ, позволяющий получать судовое маловязкое топливо с улучшенными низкотемпературными свойствами, соответствующее требованиям ТУ 38.101567-2005 и ГОСТ 32510-2013, для среднеоборотных и высокооборотных дизельных двигателей. 5 пр., 2 табл.

Формула изобретения RU 2 723 115 C1

Способ получения судового маловязкого топлива, включающий перегонку нефти с выделением фракции вакуумного газойля и добавление присадки, отличающийся тем, что при перегонке нефти выделяют фракции легкого вакуумного газойля, выкипающего при температуре от 290 до 430°С, и тяжелого вакуумного газойля, выкипающего при температуре от 430 до 550°С, затем смешивают их в массовом соотношении 30-40:60-70 и подвергают гидрокрекингу в стационарном слое алюмосиликат-никельмолибденового катализатора при температуре от 340 до 390°С и давлении от 15,6 до 17,1 МПа, с выделением дизельной фракции гидрокрекинга, выкипающей при температуре от 200 до 360°С, и компаундированием дизельной фракции гидрокрекинга и легкого вакуумного газойля, взятых в их массовом соотношении:

Дизельная фракция гидрокрекинга 35-80 Легкий вакуумный газойль 20-65,

в качестве депрессорно-диспергирующей присадки используют смесь, состоящую на 10 мас.% из сополимера этилена с винилацетатом, на 20 мас.% из амидоимидазолина и на 70 мас.% из толуола, в количестве от 0,01 до 0,50 мас.%.

Документы, цитированные в отчете о поиске Патент 2020 года RU2723115C1

СПОСОБ ПОЛУЧЕНИЯ СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2014
  • Кондрашева Наталья Константиновна
  • Рудко Вячеслав Алексеевич
  • Шайдулина Алина Азатовна
  • Кондрашов Дмитрий Олегович
RU2570647C1
СУДОВОЕ МАЛОВЯЗКОЕ ТОПЛИВО 2012
  • Котов Сергей Владимирович
  • Тыщенко Владимир Александрович
  • Рудяк Константин Борисович
  • Камалов Камил Гарифович
  • Муращенко Марина Геннадьевна
  • Лучина Наталья Юрьевна
  • Ясиненко Виктор Александрович
  • Канкаева Ирина Николаевна
  • Стрельникова Екатерина Александровна
RU2478692C1
ТОПЛИВО МАЛОВЯЗКОЕ СУДОВОЕ 1995
  • Пережигина И.Я.
  • Митусова Т.Н.
  • Рогов С.Л.
  • Юхнев В.А.
  • Баженов В.П.
  • Шуверов В.М.
  • Веселкин В.А.
RU2076138C1
СПОСОБ ПОЛУЧЕНИЯ СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 1999
  • Кондрашева Н.К.
  • Рогачева О.И.
  • Калимуллин М.М.
  • Сухоруков А.М.
  • Ханило В.И.
  • Кондрашев Д.О.
RU2149888C1
СПОСОБ ПОЛУЧЕНИЯ МАЛОВЯЗКОГО СУДОВОГО ТОПЛИВА 1995
  • Кубрин Ю.Г.
  • Лядин Н.М.
  • Пронин Н.В.
  • Шафранский В.Г.
  • Шпаченко В.А.
  • Жидков Г.А.
  • Кочеткова З.Г.
  • Борисов В.П.
  • Митусова Т.Н.
  • Пережигина И.Я.
  • Большаков В.Ф.
RU2074232C1

RU 2 723 115 C1

Авторы

Кондрашева Наталья Константиновна

Смышляева Ксения Игоревна

Рудко Вячеслав Алексеевич

Даты

2020-06-08Публикация

2019-11-29Подача