СПОСОБ ПОВЕРХНОСТНОЙ ДЕЗИНФЕКЦИИ ЯЙЦА Российский патент 2018 года по МПК A23L3/26 A23L3/32 

Описание патента на изобретение RU2654622C1

Изобретение относится к области пищевой промышленности, а именно к способам дезинфекции пищевых продуктов, в частности поверхностной дезинфекции яйца пучком ускоренных электронов.

Сущность изобретения заключается в том, что при облучении яйца пучком ускоренных электронов за счет подбора энергии электронов выбирается такой профиль распределения поглощенной дозы (ПД) внутри продукта, чтобы при облучении уничтожать все виды микроорганизмов, в том числе и патогенных, как на поверхности скорлупы, так и в ее порах и воздушной камере, вплоть до подскорлупных оболочек. При этом облучения самого белка производиться ускоренными электронами практически не будет.

Продукты питания должны быть безопасны для потребителя. Одним из факторов опасности является микробиологическая загрязненность. При этом требования к микробиологической загрязненности включают контроль как общей микробиологической загрязненности, так и наличия/отсутствия отдельных видов особо опасных патогенных микроорганизмов. Допустимый уровень микробиологической загрязненности достигается комплексом санитарно-гигиенических условий при изготовлении и расфасовке пищевых продуктов.

В настоящее время практически единственным способом снижения микробиологической загрязненности пищевых продуктов является термическая обработка. Однако термическая стерилизация ведет к необратимому изменению свойств сырья, что не всегда допустимо. Применяемые химические способы, например засолка, засахаривание, приводят к тому же результату, а кроме того, используют большое количество консерванта. Поэтому для увеличения сроков хранения пищевых продуктов широко применяется термическая пастеризация с последующим охлаждением до температур, при которых размножение микроорганизмов затруднено.

Известно, что одним из показателей, характеризующим качество яиц, является чистота скорлупы. Однако наличие грязи (т.е. микроорганизмов) не только ухудшает внешний вид яиц, но и способствует проникновению микроорганизмов через поры скорлупы в содержимое яйца, что приводит к быстрой порче яиц, а также делает их опасными к заражению патогенными микроорганизмами, в том числе рода сальмонелла.

Мойка улучшает внешний вид яиц, но резко снижается их стойкость при хранении, поэтому применяется обычно перед разбиванием яйца в пищевой промышленности [1]. При этом мойка приводит к открытию пор в скорлупе, через которые проникают микроорганизмы, а также требует расхода горячей воды (~80°С) и химически дезинфекционных веществ (2-3% перекись водорода), что существенно увеличивает загрязнение природы отходами [2].

Известно изобретение [заявка на изобретение RU 93001326 «Способ дезинфекции яиц», МПК А01К 43/00, 1993 г.]. Сущность изобретения состоит в том, что предлагается способ дезинфекции яиц, в котором с целью обеспечения экологической чистоты технологического процесса, повышения безопасности обслуживающего персонала при сохранении достаточного качества дезинфекции и жизнедеятельности яиц предусматривается их обработка микроволновой энергией в количестве 4,5-25 кДж/кг. К недостатку изобретения можно отнести то, что при обработке микроволновой энергией неизбежен существенный нагрев яйца с возможными негативными последствиями для белка.

Известно изобретение [патент RU 2524533 «Установка для уф дезинфекции твердых, жидких и газообразных продуктов», A23L 3/28, A23L 3/26, 2012 г.]. Изобретение относится к сфере биологического обеззараживания твердых, жидких и газообразных продуктов, предназначенных для использования в различных областях жизнедеятельности человека, животных и растений, предпочтительно в бытовых условиях и на малых предприятиях. Технический результат изобретения состоит в расширении функциональных возможностей установки при использовании ее в условиях малых предприятий и в быту и упрощении конструкции. Этот результат обеспечивается тем, что дезинфицируемый продукт перемещается по продуктопроводу, выполненному в виде двух плоских пластин, прозрачных для УФ-излучения и расположенных в корпусе вертикально или наклонно на расстоянии 0,2-10 мм друг от друга, а источники УФ-излучения расположены по обе стороны от продуктопровода. Такое конструктивное решение обеспечивает гарантированное обеззараживание любых жидких и газообразных продуктов, так как половина толщины слоя продукта гарантированно меньше глубины проникновения УФ-излучения для любых продуктов. К недостаткам изобретения можно отнести как низкий КПД преобразования энергии в УФ-излучение, так и сложность проникновения УФ излучения через скорлупу для уничтожения патогенных микроорганизмов в подскорлупных оболочках.

Известно изобретение [патент CN 203388215 U «Sterilizerforfruits, vegetables, eggs and poultry - Стерилизатор для фруктов, овощей и яйца птицы», A23L 5/20, 2013 г.]. Сущность изобретения состоит в поверхностной дезинфекции фруктов, овощей и яйца озоном внутри установки, содержащий генератор озона. К недостатку изобретения относится циклический характер работы, что не позволяет его использовать в пищевой промышленности, а также сложность проникновения озона и подскорлупные оболочки для уничтожения там патогенных микроорганизмов.

Альтернативой является радиационная стерилизация вследствие универсальности поражающего действия ионизирующего излучения на любые биологические объекты. При этом поглощенная доза (ПД) радиационной стерилизации (независимо от вида излучения) не превышает 25 кГр [3].

Ближайшим аналогом изобретения (прототип) является [заявка на изобретение RU 2000122974 «Способ обработки объектов», A61L 2/08, A23L 3/00, A23L 3/26, А23В 4/015, А23В 5/015, 1999 г.] способ изменения свойств и/или обработки объектов, в частности пищевых продуктов, при котором объекты с помощью технологического транспортера транспортной системы транспортируют мимо по меньшей мере одного устройства для выхода электронов, в частности ускорителя электронов, в камере для облучения, причем необходимые для облучения выходящие из накапливаемого катода электроны фокусируют и преобразуют в импульсы в блоке ускорителя волнами определенной заданной частоты, после чего электроны выходят с определенной частотой из устройства для выхода электронов и их направляют на облучаемые объекты, отличающийся тем, что объекты передают на технологический транспортер с накопительного транспортера, причем скорость передачи задают регулируемым приводным устройством с помощью блока управления таким образом, что уже находящиеся на технологическом транспортере объекты не смещаются и объекты транспортируют мимо устройства для выхода электронов без промежутков между ними.

Недостатком прототипа является то, что при облучении в пищевых продуктах возможно протекание различных химических реакций, которые могут изменить органолептические свойства продуктов, что вынуждает устанавливать предельные ПД при облучении различных продуктов.

Например, для свежего яйца рекомендуемый уровень ПД≤3 кГр, что близко к уровню ПД для инактивации бактерий группы сальмонеллы [4]. Облученные продукты маркируются специальным знаком "радура", чтобы покупатель мог выбирать, есть ему облученный продукт или нет. К сожалению, радиофобия имеет серьезное значение при выборе потребителей.

Технической задачей решаемой в данном изобретении было создание способа поверхностной дезинфекции яйца, сочетающего относительно невысокую энергию электронов, высокую скорость набора дозы, невысокую цену и хорошую ремонтопригодность.

Решением поставленной задачи было то, что за счет подбора энергии электронов выбирается такой профиль распределения поглощенной дозы внутри яйца, чтобы при облучении уничтожать все виды микроорганизмов, в том числе и патогенных, как на поверхности скорлупы, так и в ее порах и воздушной камере, вплоть до подскорлупных оболочек. При этом облучения самого белка производиться ускоренными электронами практически не будет.

В настоящее время разработаны и выпускаются наносекундные ускорители электронов для технологий [5], позволяющие существенно снизить как затраты на сам источник излучения, так и на радиационную защиту персонала.

Кроме того, известно более сильное бактерицидное действие наносекундного электронного пучка (НЭП) [6], что дает возможность в 2-3 раза уменьшить величину ПД электронного пучка, что увеличивает производительности метода при тех же затратах энергии и материальных средств

Особенностью спектра НЭП является наличие существенно большей части низкоэнергетичных электронов, которые возникают при ускорении на фронтах импульса ускоряющего напряжения. При решении рассматриваемой проблемы это является положительной особенностью, т.к. позволяет получить нужный профиль распределения ПД внутри продукта.

К сожалению, полностью избежать облучения белка яйца невозможно, т.к. при поглощении электронов создается тормозное излучение, вносящее основной вклад в ПД, создаваемую внутри куриного яйца, которая будет в сотни раз меньше ПД от электронного пучка на поверхности.

Кроме того, при облучении яйца нарабатывается озон, который также способствует поверхностной дезинфекции, особенно при облучении яиц в герметичной пластиковой таре. Возможно осуществить стерилизацию яиц после упаковки как за счет самого облучения, так и создания в этой таре озона с концентрацией, смертельной для микроорганизмов (до 75 мг/м3) - радиационно-химическая стерилизация [7], при этом профиль распределения ПД внутри яйца можно выбрать так, чтобы белок вообще не облучался электронами. Важно, что наличие герметичной оболочки позволяет решить проблему повторного обсеменения яйца при хранении.

Установка для реализации способа поверхностной дезинфекции яйца содержит источник ускоренных электронов, который выполнен в виде наносекундного частотного ускорителя электронов с полупроводниковым прерывателем тока и вакуумным диодом для двухстороннего облучения с холодным катодом большого размера [8], камеру облучения с конвейером подачи яйца в пластиковой упаковке и биологической защитой, и пульт управления.

При этом большой размер холодного катода позволяет получать равномерное поле электронного излучения, необходимое для однородного облучения стандартной пластиковой упаковки с яйцами сразу с двух сторон.

Способ работает следующим образом. В камеру облучения по конвейеру помещается яйцо в пластиковой упаковке, на пульте управления устанавливается требуемая частота работы ускорителя для получения на поверхности яйца и в подскорлупных оболочках поглощенной дозы до 25 кГр, и включается ускоритель. Происходит облучение пластиковой упаковки с яйцами с двух сторон.

Экспериментальная проверка способа проводилась на импульсно-периодическом наносекундном ускорителе УРТ-0,5 [9] (энергия электронов до 500 кэВ, длительность импульса 50 нс, частота работы до 200 Гц).

На первом этапе было проведено определение распределения поглощенной дозы (ПД) по глубине в полиэтилене (аналоге биологической ткани) методом серого клина. ПД определялась с помощью пленочного дозиметра СО ПД(Ф)Р-5/50 [10], закрытого слоями полиэтилена различной толщины (до 600 мкм). Измерение ПД на пленочном дозиметре проводилось посредством определения плотности потемнения на спектрофотометре ПЭ-5400ВИ с последующим пересчетом по калибровочным кривым. В процессе экспериментов ускоритель работал в режимах при зарядном напряжении 25 и 30 кВ. Результаты дозиметрии электронного пучка приведены на Фиг. 1.

Кроме того, с помощью пленочного дозиметра было выполнено измерение ПД электронного пучка на поверхности скорлупы (снятой с яйца) и под скорлупой, а также под слоем поглотителя (полиэтилен толщиной 80 мкм) (Фиг. 2), при этом образец находился в пластиковом контейнере (типа П-11 "Отборка" [11], изготовленном из полистирола по ТУ 2293-001-61276561-2012) для сохранения геометрии, применяемой при облучения яиц. Результаты дозиметрии при различном зарядном напряжении приведены в Табл. 1.

Для определения распределения ПД тормозного излучения (ТИ) внутри куриного яйца использовался термолюминесцентные дозиметры (ТЛД) ТЛД-500 (диаметром 5 мм и толщиной 1 мм) на основе оксида алюминия, допированного углеродом [12]. Дозиметры располагались в сечениях вареных яиц (разрезанных или вдоль, или поперек) таким образом, чтобы было возможно определить распределение ПД в различных точках биологического объекта (Фиг. 3).

Измерение ПД проводилось посредством аппаратного комплекса для высвечивания ТЛД дозиметров. Кривые термолюминесценции регистрировались на специальной автоматизированной установке при скорости нагрева 2 К/с [13]. Сигнал регистрировался фотоумножителем ФЭУ-142 с пониженной чувствительностью к тепловому излучению нагревателя, максимальная температура которого могла составлять 1200 К.

Из Фиг. 1 видно, что изменяя зарядное напряжение ускорителя можно подобрать глубину, на которую проникают электроны, так, чтобы ограничится облучением скорлупы (0,3-0,4 мм) и подскорлупных оболочек из яйца (~70 мкм) [1].

Необходимо отметить, что скорлупа состоит из карбоната кальция как с плотностью (2,74-2,83 г/см3), так и атомным номером, близким к алюминию. Однако скорлупа - это пористая структура и прохождение электронов через нее будет сложным процессом.

Из данных Табл. 1 видно, что при зарядном напряжении 30 кВ удается получить необходимый профиль распределения поглощенной дозы по глубине, при котором электронное облучение не проходит далее слоя поглотителя (Фиг. 2), моделирующего подскорлупные оболочки яйца.

Результаты измерения показали, что ПД тормозного излучения внутри яйца не превышает 0,31 сГр/импульс, а в желтке - не более 0,2 сГр/импульс (Табл. 2). При этом на поверхности яйца ПД электронного пучка составляла 0,2 кГр/импульс (Табл. 1). Следовательно, при ПД=5 кГр, набираемой за 25 импульсов и достаточной для дезинфекции поверхности яйца от патогенных микроорганизмов (в том числе рода сальмонелла), ПД тормозного излучения в белке не превысит 8 сГр, а желтке 5 сГр.

Данная величина ПД не должна приводить к биологическим изменениям биологической ткани, а наоборот, находится в области ПД, обладающей стимулирующим эффектом для живых организмов (радиационный гормезис) [14].

Расчеты выхода тормозного излучения при облучении поверхности яйца (диаметром 4,5 см) электронным пучком от ускорителя УРТ-0,5 (плотность электронного тока в импульсе ~3 А/см2), выполненные по формуле Фостера [15] и по методике расчета биологической защиты для ускорителей электронов [16], показывают, что ПД находится в диапазоне 0,11-0,15 сГр/импульс. Дополнительное облучение яйца создается за счет тормозного излучения электронного пучка, поглощающего в конструкциях выходной части ускорителя, а также за счет рассеянного излучения.

Для наглядной иллюстрации заявляемого способа приведены следующие чертежи:

Фиг. 1. Распределение ПД электронного пучка по глубине в полиэтилене при различном зарядном напряжении на ускорителе УРТ-0,5.

Фиг. 2. Геометрия облучения при дозиметрии электронного пучка.

Фиг. 3. Расположение ТЛД дозиметров (диаметром 5 мм) в курином яйце в вертикальном (б) и горизонтальном сечении (а).

Таблица 1. Результаты измерений ПД электронного пучка.

Таблица 2. Результаты измерений ПД тормозного излучения внутри яйца

Источники информации

1. В.В. Гуслянников, М.А. Подлегаев // Технология мяса птицы и яйцепродуктов / М.: Пищевая промышленность, 1979, 286 с.

2. Лищук А.П. Обеззараживание куриных яиц и яйцепродуктов (меланж и яичный порошок) от сальмонелл Диссертация на соискание ученой степени кандидата ветеринарных наук (16.00.06) / Лищук Андрей Петрович; Российская академия сельскохозяйственных наук. - Москва, 2002. - 177 с.

3. Туманян М.А., Каушанский Д.А. // Радиационная стерилизация / М.: Медицина, 1974. 304 с.

4. European Food Safety Authority / Statement summarising the Conclusions and Recommendations from the Opinions on the Safety of Irradiation of Food adopted by the BIOHAZ and CEF Panels // EFSA Journal 2011; 9(4): 2107, DOI: 10.2903 / j. efsa. 2011. 2107.

5. С.Ю. Соковнин / Наносекундные ускорители электронов и радиационные технологии на их основе. Екатеринбург: УрО РАН, 2007. 225 с. ISBN 5-7691-1840-7.

6. Соковнин С.Ю., Котов Ю.А.. Рукин С.Н., Месяц Г.А... Исследование действия импульсного частотного электронного пучка на микроорганизмы в водных растворах // Экология. 1996. №3. С. 222-224.

7. Патент РФ №2233564, класс 7 Н05Н 5/00.

8. Патент РФ №2163144, класс А61L 2/08.

9. Sokovnin, S. Yu., Balezin, М.E., Improving the Operating Characteristics of an URT-0.5 Accelerator. Instrum. andExper. Techn., V. 48, No. 3, 2005, pp. 392-396.

10. P.А. Абдулов, B.B. Генералова и др. // Дозиметрическое обеспечение радиационно-технологических процессов в России / Химия высоких энергий, 2002, т. 36, №1, с. 26-33.

11. http://www.kingpack.ru/eggs/chicken/

12. Детектор ТЛД-500К ТУ 2655-006-02069208-95.

13. Mil'man, Е.V. , S.V. Nikiforov, S.V. Solov'ev I., G. Revkov, E.N. Litovchenko, The role of deep traps in lluminescence of anion-defective α-Al2O3: С crystals. Physics of the Solid State. 2008, V. 50, I. 11, pp. 2076-2080. DOI: 10.1134/S1063783408110127.

14. Кузин A.M. Проблема малых доз и идеи гормезиса в радиобиологии // Радиобиология. - 1991. - Т. 31, вып. 1. - С. 16-21. - ISSN 0869-8031.

15. Forster D.W., Goodmen М., Herbert G., et al. Electron beam diagnostics using x-rays // Radiation Production Notes. 1971. Note 10. P. 2-26.

16. Правила работы с радиоактивными веществами и другими источниками ионизирующих излучений в учреждениях и организациях Академии наук СССР. - М.: Наука, 1984. - 303 с.

Похожие патенты RU2654622C1

название год авторы номер документа
СПОСОБ ПОВЕРХНОСТНОЙ ДЕЗИНФЕКЦИИ ЯЙЦА 2018
  • Соковнин Сергей Юрьевич
  • Донник Ирина Михайловна
  • Шкуратова Ирина Алексеевна
  • Кривоногова Анна Сергеевна
  • Исаева Альбина Геннадьевна
  • Балезин Михаил Евгеньевич
  • Вазиров Руслан Альбертович
  • Кривоногов Павел Сергеевич
  • Моисеева Ксения Викторовна
  • Баранова Анна Александровна
  • Мусихина Нина Борисовна
RU2729813C2
Способ дезинфекции меланжа и устройство для его осуществления 2020
  • Соковнин Сергей Юрьевич
  • Шкуратова Ирина Алексеевна
  • Кривоногова Анна Сергеевна
  • Исаева Альбина Геннадьевна
  • Балезин Михаил Евгеньевич
  • Вазиров Руслан Альбертович
  • Моисеева Ксения Викторовна
  • Баранова Анна Александровна
  • Мусихина Нина Борисовна
  • Романова Алиса Сергеевна
RU2767065C1
СПОСОБ СТЕРИЛИЗАЦИИ МЕЛАНЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Котов Ю.А.
  • Соковнин С.Ю.
  • Питер А.А.
  • Наконечный В.И.
RU2235470C2
СПОСОБ ИЗМЕРЕНИЯ ВЫСОКИХ И СВЕРХВЫСОКИХ ДОЗ, НАКОПЛЕННЫХ В ТЕРМОЛЮМИНЕСЦЕНТНЫХ ДЕТЕКТОРАХ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОСКИДА АЛЮМИНИЯ, В ТОМ ЧИСЛЕ ПРИ ОБЛУЧЕНИИ В УСЛОВИЯХ ПОВЫШЕННЫХ ТЕМПЕРАТУР ОКРУЖАЮЩЕЙ СРЕДЫ 2014
  • Абашев Ринат Мансурович
  • Власов Максим Игоревич
  • Мильман Игорь Игориевич
  • Моисейкин Евгений Витальевич
  • Сарычев Максим Николаевич
  • Соловьев Сергей Васильевич
  • Сюрдо Александр Иванович
  • Хохлов Георгий Константинович
RU2570107C1
РАДИАЦИОННЫЙ СПОСОБ ДЕЗИНФЕКЦИИ ВЕЩЕВОГО ИМУЩЕСТВА И ДОКУМЕНТОВ 2009
  • Загнойко Сергей Николаевич
  • Лакомов Владимир Павлович
  • Омельяненко Юлия Валерьевна
  • Пасынкина Анастасия Павловна
  • Щербаков Михаил Геннадьевич
RU2436592C2
Комбинированный способ стерилизации костных имплантатов 2016
  • Матвейчук Игорь Васильевич
  • Розанов Владимир Викторович
  • Гордонова Ирина Константиновна
  • Никитина Зоя Кимовна
  • Сидельников Николай Иванович
  • Литвинов Юрий Юрьевич
  • Николаева Анна Александровна
  • Черняев Александр Петрович
  • Пантелеев Илья Владимирович
RU2630464C1
Способ дозиметрии фотонных и корпускулярных ионизирующих излучений 2022
  • Мильман Игорь Игоревич
  • Сюрдо Александр Иванович
  • Абашев Ринат Мансурович
  • Вазирова Екатерина Николаевна
RU2792633C1
СПОСОБ СТЕРИЛИЗАЦИИ УПАКОВАННЫХ ИЗДЕЛИЙ 1997
  • Котов Ю.А.
  • Соковнин С.Ю.
RU2163144C2
УСТРОЙСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ВОЗДУХА 2021
  • Морозов Виталий Юрьевич
  • Колесников Роман Олегович
  • Черников Алексей Николаевич
  • Колесникова Маргарита Сергеевна
  • Салеева Ирина Павловна
RU2758633C1
Способ дозиметрии фотонных и корпускулярных ионизирующих излучений 2023
  • Мильман Игорь Игоревич
  • Сюрдо Александр Иванович
  • Абашев Ринат Мансурович
  • Вазирова Екатерина Николаевна
RU2816340C1

Иллюстрации к изобретению RU 2 654 622 C1

Реферат патента 2018 года СПОСОБ ПОВЕРХНОСТНОЙ ДЕЗИНФЕКЦИИ ЯЙЦА

Изобретение относится к области пищевой промышленности, а именно к способам дезинфекции пищевых продуктов. Способ поверхностной дезинфекции яйца путем облучения пучком ускоренных электронов предусматривает облучение яйца в герметичной пластиковой упаковке за счет подбора энергии электронов. При этом выбирается такой профиль распределения поглощенной дозы внутри яйца, чтобы при облучении уничтожать все виды микроорганизмов как на поверхности скорлупы поглощенной дозой до 25 кГр, так и в ее порах и воздушной камере поглощенной дозой до 5 кГр, вплоть до подскорлупных оболочек суммарно на глубине до 0,47 мм. Облучения самого белка яйца ускоренными электронами не производится. Изобретение позволяет получить безопасный продукт питания без его микробиологического загрязнения. 1 з.п. ф-лы, 3 ил., 2 табл.

Формула изобретения RU 2 654 622 C1

1. Способ поверхностной дезинфекции яйца путем облучения пучком ускоренных электронов, отличающийся тем, что за счет подбора энергии электронов выбирается такой профиль распределения поглощенной дозы внутри яйца, чтобы при облучении уничтожать все виды микроорганизмов как на поверхности скорлупы поглощенной дозой до 25 кГр, так и в ее порах и воздушной камере поглощенной дозой до 5 кГр, вплоть до подскорлупных оболочек суммарно на глубине до 0,47 мм, при этом облучения самого белка яйца ускоренными электронами не производится.

2. Способ по п. 1, отличающийся тем, что облучение яйца производится в герметичной пластиковой упаковке как за счет самого облучения поглощенной дозой до 25 кГр, так и создания в упаковке озона с концентрацией до 75 мг/м3, смертельной для микроорганизмов.

Документы, цитированные в отчете о поиске Патент 2018 года RU2654622C1

УСТАНОВКА ДЛЯ СВЕТОЛАЗЕРНОЙ ОБРАБОТКИ И ДЕЗИНФЕКЦИИ ЯИЦ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПТИЦЫ 2003
  • Мамукаев М.Н.
  • Гутиев И.П.
  • Тохтиев Т.А.
  • Арсагов Т.А.
RU2265998C2
Магазинное устройство для подачи изделий в металлообрабатывающих станках 1930
  • Тисов В.М.
SU26881A1
СПОСОБ ПОВЫШЕНИЯ ЭМБРИОНАЛЬНОЙ ЖИЗНЕСПОСОБНОСТИ ПТИЦЫ 2005
  • Мамукаев Матвей Николаевич
  • Арсагов Вадим Анатольевич
  • Тохтиев Тотраз Аликович
RU2289918C1
US 5364645 A1, 15.11.1994.

RU 2 654 622 C1

Авторы

Соковнин Сергей Юрьевич

Донник Ирина Михайловна

Шкуратова Ирина Алексеевна

Кривоногова Анна Сергеевна

Исаева Альбина Геннадьевна

Балезин Михаил Евгеньевич

Вазиров Руслан Альбертович

Кривоногов Павел Сергеевич

Моисеева Ксения Викторовна

Баранова Анна Александровна

Мусихина Нина Борисовна

Даты

2018-05-21Публикация

2017-01-10Подача