СОСТАВ ПОЛИЭТИЛЕНА С ВЫСОКОЙ СТОЙКОСТЬЮ К УДАРНЫМ НАГРУЗКАМ И РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ Российский патент 2018 года по МПК C08L23/06 

Описание патента на изобретение RU2654700C2

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТНИЕ

Настоящее изобретение относится к составу полиэтилена пригодного для производства защитных покрытий металлических труб, в частности стальных труб.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Примеры составов известного уровня техники, подходящих для указанного применения, описываются в патентах WO 2009080207 и WO 2012152421.

Было обнаружено, что путем соответствующего подбора плотности и молекулярных масс состава, достигается лучший баланс стойкости к ударным нагрузкам и растрескиванию под напряжением (ESCR) при низких температурах.

Дополнительным и важным преимуществом состава полиэтилена по настоящему изобретению является возможность его формования из расплава при высоких значениях скорости сдвига, что означает высокую скорость обработки и/или уменьшение температур формования, не сталкиваясь с нестабильностью показателей текучести, которые, как правило, приводят к неприемлемым дефектам в готовых изделиях (например, ребристой поверхности или растрескиванию расплава) даже в отсутствии технологических добавок.

Настоящее изобретение также относится к многостадийному способу полимеризации для получения указанного состава полиэтилена.

Настоящее изобретение касается состава полиэтилена, обладающего следующими признаками:

1) плотностью от 0,938 до 0,948 г/см3, предпочтительнее от 0,940 до 0,945 г/см3, при 23°С, определенную согласно стандарту ISO 1183;

2) отношением MIF/MIP от 15 до 25, в частности от 19 до 23, где MIF представляет собой индекс текучести расплава при 190°С с массой груза 21,60 кг, a MIP представляет собой индекс текучести расплава при 190°С с массой груза 5 кг, определенными согласно стандарта ISO 1133;

3) MIF от 30 до 45 г/10 мин, предпочтительно от 35 до 40 г/10 мин, более предпочтительно от 35 до 39 г/10 мин;

4) Mz, равным или превышающим 1000000 г/моль;

5) показателем длинноцепочечной разветвленности (ПДЦР), равным или превышающим 0,55, предпочтительно равным или превышающим 0,60;

где ПДЦР представляет собой отношение измеренного среднеквадратичного радиуса инерции макромолекулы Rg, измеренного способом GPC-MALLS (гельфильтрационной хроматографии с детектированием рассеивания лазерного излучения с кратными углами) к измеренному среднеквадратичному радиусу инерции макромолекулы линейного полимера, имеющего ту же молекулярную массу.

Предпочтительно Mz больше 1000000 г/моль, в частности, равен или больше 1100000 г/моль. Более того, предпочтительный верхний предел Mz составляет 2000000 г/моль, более предпочтительно 1800000 г/моль и наиболее предпочтительно 1600000 г/моль. Таким образом, конкретными и, в частности, предпочитаемыми диапазонами Mz являются:

- от равного или большего чем 1000000 г/моль до 1800000 г/моль, в частности от равного или большего чем 1000000 г/моль до 1600000 г/моль; или, более предпочтительно

- от 1100000 г/моль до 1800000 г/моль, в частности от 1100000 г/моль до 1600000 г/моль.

Предпочтительно в дополнение к указанным признакам 1)-5) состав полиэтилена по настоящему изобретению также обладает:

6) вязкостью (0,02) от 25000 до 35000 Па⋅с, предпочтительно от 28000 до 33000 Па⋅с, более предпочтительно от 29000 до 33000 Па⋅с;

отличающийся тем, что вязкость (0,02) представляет собой комплексную вязкость в условиях сдвига при угловой частоте 0,02 радиан в секунду, измеренную ротационным коническим вискозиметром при 190°С.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Эти и другие характеристики, особенности и преимущества настоящего изобретения станут более понятны из следующего описания, прилагаемой формулы изобретения и рисунков, где:

На Рис. 1 представлен иллюстративный вариант упрощенной блок-схемы технологического процесса из двух последовательно соединенных газофазных реакторов, пригодных, в соответствии с различными вариантами осуществления процессов полимеризации этилена, для производства различных вариантов состава полиэтилена, описанного в данном документе.

Следует иметь в виду, что различные варианты изобретения не ограничиваются компоновкой и устройствами, показанными на рисунках.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Выражение "состав полиэтилена" предназначен для охвата, в качестве альтернатив, одного полимера этилена и состава полимера этилена, в частности композиции из двух или нескольких компонентов полимера этилена, предпочтительно с разными молекулярными массами, называемого "бимодальным"или "мультимодальным" полимером в данной области техники.

Обычно состав полиэтилена по настоящему изобретению включает в себя или содержит один или несколько сополимеров этилена.

Все признаки, определенные здесь и включающие ранее определенные признаки 1)-6), относятся к указанному полимеру этилена или составу полимера этилена. Добавление других компонентов, как правило, добавок, используемых в данной области техники, изменяет один или несколько из указанных признаков.

В частности, в присутствии чистого углерода плотность возрастает до 0,9953-0,963 г/см3.

Отношением MIF/MIP определяется реологическая мера молекулярно-массового распределения.

Как описано в примерах, другой мерой молекулярно-массового распределения является соотношение Mw/Mn, где Mw представляет собой усредненную молярную массу, а Μn представляет собой среднечисленную молекулярную массу, измеренные методом ГПХ (гельпроникающей хроматографии).

Предпочтительные соотношения Mw/Mn для состава полиэтилена по настоящему изобретению находятся в диапазоне от 15 до 30, более предпочтительно от 15 до 25.

Более того состав полиэтилена по настоящему изобретению, по меньшей мере, обладает одним из следующих дополнительных признаков:

- Mw равным или меньшим 300000 г/моль, предпочтительно равным или меньшим 250000 г/моль, в частности от 250000 до 180000 г/моль;

-MIP: 1,2-2,5 г/10 мин;

- Содержание сомономера от 1,5 до 6 вес. % по отношению к общей массе состава.

Сомономер или сомономеры, присутствующие в сополимерах этилена, обычно выбираются из олефинов, имеющих формулу CH2=CHR, где R представляет собой линейный или разветвленный алкильный радикал, содержащий от 1 до 10 атомов углерода.

Конкретными примерами являются пропилен, бутен-1, пентен-1,4-метил-пентен-1, гексен-1, октен-1 и децен-1. Особенно предпочтительным сомономером является гексен-1.

В частности, в предпочтительном варианте осуществления изобретения, настоящий состав содержит:

A) 40-60 вес. % гомополимера или сополимера этилена (предпочтительнее гомополимера) с плотностью равной или большей 0,960 г/см3 и индексом текучести расплава MIE при 190°С с массой груза 2,16 килограмма, в соответствии с ISO 1133, равным 40-250 г/10 мин;

B) 40-60 вес. % любого сополимера этилена с величиной MIE меньшей MIE из пункта А), предпочтительно ниже 0,5 г/10 мин

Указанные проценты приведены по отношению к общей массе А)+В).

Предпочтительное количество сомономера в В) находится в интервале от 3 до 12 вес % по отношению к общей массе В).

Как указано ранее, настоящий состав полиэтилена преимущественно используется для производства защитных покрытий металлических труб, в частности стальных труб.

Фактически он характеризуется следующими свойствами:

- Испытание на ударную прочность при растяжении с надрезом (Т=-30°С) в 150 кДж/м2 или выше;

- Стойкость к растрескиванию под напряжением, измеренная испытанием всего разреза на ползучесть (FNCT) при 4 МПа/80°С>250 часов;

Подробности методов испытаний приведены в примерах.

Как упоминалось ранее, состав полиэтилена по настоящему изобретению может быть подвергнут формованию из расплава, как ни странно, при высоких значениях скорости сдвига, не подвергаясь колебаниям давления и нестабильности показателя текучести.

Таким образом, другим предпочтительным признаком состава полиэтилена по настоящему изобретению является индекс SIC от 3 до 5, предпочтительно от 3,5 до 4,5, где индекс SIC представляет собой индекс испытания на кристаллизацию при сдвиге, рассчитанный по следующей формуле:

где tonset,SIC@1000 измеряется в секундах и представляет собой время, необходимое для начала кристаллизации при скорости сдвига 1000 с-1, a tonset, quiescent измеряется в секундах и представляет собой время начала кристаллизация при температуре 125°С без сдвига, определенное в изотермическом режиме способом дифференциальной сканирующей калориметрии (DSC).

Благодаря отсутствию ограничений на используемые способы полимеризации и катализаторы, было обнаружено, что состав полиэтилена по настоящему изобретению создается способом газофазной полимеризации в присутствии катализатора Циглера-Натта.

Катализатор Циглера-Натта представляет собой продукт реакции металлоорганического соединения группы 1, 2 или 13 Периодической таблицы элементов с соединением переходного металла групп с 4 по 10 Периодической таблицы элементов (новая нотация). В частности, соединение переходного металла можно выбрать из соединений Ti, V, Zr, Cr и Hf и предпочтительно на носителе MgCl2.

Особенно предпочтительные катализаторы содержат продукт реакции указанного металлоорганического соединения из групп 1, 2 или 13 Периодической таблицы элементов с твердым компонентом катализатора, содержащим соединение Ti на носителе MgCl2.

Предпочтительными металлоорганическими соединениями являются алюминийорганические соединения.

Таким образом, в предпочтительном варианте осуществления состав полиэтилена по настоящему изобретению получается с использованием катализатора полимеризации Циглера-Натта, более предпочтительно катализатора Циглера-Натта на носителе MgCl2, еще более предпочтительно катализатора Циглера-Натта, содержащего продукт реакции:

a) твердого компонента катализатора, содержащего соединение Ti и электронодонорное соединение ED, на носителе MgCl2;

b) алюминийорганического соединения и, необязательно,

(с) внешнего электронодонорного соединения EDext.

Предпочтительными являются: а) молярное соотношение ED/Ti в диапазоне от 1,5 до 3,5 и молярное соотношение Mg/Ti выше 5,5, в частности от 6 до 80.

Подходящими соединениями титана являются тетрагалогениды или соединения с формулой TiXn(OR1)4-n, где 0≤n≤3, X представляет собой галоген, предпочтительно хлор, a R1 представляет собой углеводородную группу C110. Тетрахлорид титана является предпочтительным соединением.

Соединение ED обычно выбирают из спиртов, кетонов, аминов, амидов, нитрилов, алкоксисиланов, алифатических простых эфиров и сложных эфиров алифатических карбоновых кислот.

Предпочтительно в качестве электронодонорных соединений выбирают амиды, простые эфиры и алкоксисиланы.

Отличные результаты получались при использовании сложных эфиров, особенно предпочтительных в качестве ED соединения. Конкретными примерами сложных эфиров являются алкилэфиры алифатических карбоновых кислот С1-С20 и, в частности, алкилэфиры алифатических монокарбоновых кислот С1-С8, такие как этилацетат, метилформиат, этилформиат, метилацетат, пропилацетат, изопропилацетат, n-бутилацетат, изобутилацетат. Кроме того, предпочтительными являются алифатические простые эфиры и особенно алифатические простые эфиры С2-С20, такие как тетрагидрофуран (THF) или диоксан.

В указанном твердом компоненте катализатора MgCl2 является основным носителем, даже при использовании небольших количеств дополнительных носителей. Носитель MgCl2 используется как таковой или получается из соединений Mg, используемых в качестве прекурсоров и преобразуемых в MgCl2 в ходе реакции с галогенирующими соединениями. Предпочтительным является использование MgCl2 в активной форме, которая широко известна из патентной литературы в качестве носителя для катализаторов Циглера-Натта. Патенты США 4298718 и США 4495338 первыми описали использование указанных соединений в катализе Циглера-Натта. Из данных патентов известно, что дигалогениды магния в активной форме, используемые в качестве носителя или соносителя в компонентах катализатора полимеризации олефинов, характеризуются рентгеновским спектром, в котором наиболее интенсивная линия дифракции, наблюдаемая в спектре неактивного галогенида, уменьшается по интенсивности и уширяется, согласно справочной карте ASTM. В рентгеновских спектрах предпочтительных дигалогенидов магния в активной форме, указанные наиболее интенсивные линии уменьшается по интенсивности и замещаются пиковыми значениями галогенной группы, максимум интенсивности которой, смещается в сторону более низких углов по отношению к наиболее интенсивной линии.

Особенно подходящими для получения состава полиэтилена по настоящему изобретению являются катализаторы, где твердый компонент катализатора а) получают путем предварительной реакции соединения титана с MgCl2 или прекурсором соединения Mg, необязательно в присутствии инертной среды, приготовляя таким образом промежуточный продукта а'), содержащий соединение титана на носителе MgCl2, промежуточный продукт а') затем реагирующий с ED соединением, которое добавляют к реакционной смеси по отдельности или в смеси с другими соединениями, в которых он является основным компонентом, необязательно в присутствии инертной среды.

Под термином "основным компонентом" мы подразумеваем, что указанное ED соединение должно являться основным компонентом с точки зрения молярного количества, по отношению к другим возможным соединениям, за исключением инертных растворителей или разбавителей, используемых для обработки реакционной смеси. Затем обработанный ED продукт промывается соответствующими растворителями для извлечения конечного продукта. При необходимости обработка желаемым ED соединением повторяется один или несколько раз.

Как упоминалось ранее, прекурсор MgCl2 используется в качестве исходного соединения Mg. Например, выбор осуществляется среди соединений Mg с формулой MgR'2, где группы R' являются: независимыми С1-С20 углеводородными группами, необязательно замещенными; группами OR; группами OCOR; хлором, в котором R представляет собой С1-С20 углеводородные группы, необязательно замещенные, с очевидным условием, что группы R' одновременно не являются хлором. Подходящими прекурсорами являются Льюиса аддукты между MgCl2 и подходящими основаниями по Льюису. Конкретным и предпочтительным классом являются аддукты, образованные аддуктами MgCl2 (R"OH)m, где группы R" являются С1-С20 углеводородными группами, предпочтительно C1-С10 алкильными группами, а m равно от 0,1 до 6, предпочтительно от 0,5 до 3 и более предпочтительно от 0,5 до 2. Аддукты данного типа получают путем смешивания спирта и MgCl2 в присутствии инертного углеводорода, несмешиваемого с аддуктом, в режиме перемешивания при температуре плавления аддукта (100-130°С). Эмульсия затем быстро охлаждается, вызывая отверждение аддукта в виде сферических частиц. Типичные способы получения этих сферических из аддуктов описаны, например, в патентах США 4469648, 4399054 и WO 98/44009. Другим полезным способом придания сферической формы является охлаждение распылением, описанное, например, в патентах США 5100849 и 4829034.

Особенно интересными являются аддукты MgCl2⋅(EtOH)m, где m равно от 0,15 до 1,7, полученные обработкой с более высоким содержанием спирта и его последующим тепловым удалением в потоке азота при температуре от 50 до 150°С, пока содержание спирта не уменьшится до вышеуказанного значения. Способ данного типа описывается в патенте ЕР 395083.

Удаление алкоголятов также проводится химически, путем реакции аддукта с соединениями, способными реагировать со спиртовыми группами.

Как правило, эти деалкоголированные аддукты благодаря радиусу пор вплоть до 0,1 μм, характеризуются пористостью (измеренной ртутным методом) в диапазоне от 0,15 до 2,5 см3/г предпочтительно от 0,25 до 1,5 см3/г.

Предпочтительно, чтобы реакция удаление спирта осуществлялась одновременно со стадией реакции, включающей использование соединения титана. Соответственно, эти аддукты реагируют с соединением TiXn(OR1)4-n (или, возможно, их смеси), которое упоминалось выше, предпочтительно тетрахлоридом титана. Реакция с соединением титана осуществляется суспендированием аддукта в TiCl4 (как правило, холодном). Смесь нагревают до температуры 80-130°С и выдерживают при этой температуре в течение 0,5-2 часов. Обработка соединением титана может проводиться один или несколько раз. Предпочтительным является ее двукратное повторение. Как упомянуто выше, она может проводиться в присутствии электронодонорного соединения. По окончании процесса твердое вещество выделяется путем разделения суспензии традиционными методами (расслоением и извлечением жидкости, фильтрацией, центрифугированием) и промывкой растворителями. Несмотря на то что промывка, как правило, осуществляется инертными углеводородными жидкостями, также представляется возможным использование более полярных растворителей (имеющих, например, более высокую диэлектрическую постоянную), таких как галогенированные углеводороды.

Как упоминалось выше, промежуточный продукт затем реагирует с ED соединением в условиях, способных закреплять твердое вещество эффективного количества донора. Количество используемого донора, из-за высокой универсальности данного метода, может варьироваться в широких пределах. В качестве примера, он может использоваться при молярном соотношении, по отношению к содержанию Ti в промежуточном продукте, в диапазоне от 0,5 до 20, предпочтительно от 1 до 10. Хотя это и не столь необходимо, но реакцию обычно проводят в жидкой среде, такой как жидкий углеводород. Температура, при которой осуществляется реакция, варьируется в зависимости от природы реагентов. Обычно она находится в диапазоне от -10° до 150°С и предпочтительно от 0° до 120°С. Существует область, где температур, вызывающих разложение или разрушение любых конкретных реагентов, следует избегать, даже если они попадают в соответствующий диапазон. Кроме того, время обработки меняется в зависимости от других условий, таких как: природа реагентов, температуры, концентрации и т.п. В качестве общего показателя данная стадия реакции может длиться от 10 минут до 10 часов, чаще от 0,5 часа до 5 часов. При желании и с целью дальнейшего повышения конечного содержания донора, данная стадия может повторяться один или несколько раз. По окончании данной стадии твердое вещество выделяется путем разделения суспензии традиционными методами (расслоением и извлечением жидкости, фильтрацией, центрифугированием) и промывкой растворителями. Несмотря на то, что промывка, как правило, осуществляется инертными углеводородными жидкостями, также представляется возможным использование более полярных растворителей (имеющих, например, более высокую диэлектрическую постоянную), таких как галогенированные или оксигенированные углеводороды.

Как упомянуто ранее, указанный твердый компонент катализатора превращают в катализатор для полимеризации олефинов путем его реакции, в соответствии с известными способами, с металлоорганическим соединением группы 1, 2 или 13 Периодической таблицы элементов, в частности, алкилалюминиевым соединением.

Алкилалюминиевое соединение предпочтительно выбирают из группы, включающей триалкилалюминевые соединения, например, триэтилалюминий, триизобутилалюминий, три-n-бутилалюминий, три-n-гексилалюминий, n-гексилалюминий, три-n-октилалюминий. Можно также использовать алкилалюминийгалогениды, алкилалюминийгидриды или алкилалюминийсесквихлориды, такие как AlEt2Cl и Al2Et3Cl3, необязательно в смеси с указанными триалкилалюминиевыми соединениями.

Внешнее электронодонорное соединение EDext необязательно использованное для получения указанных катализаторов Циглера-Натта, может походить или отличаться от ED, использованного в твердом катализаторе компонента а). Предпочтительно выбор осуществляется из группы, состоящей из простых эфиров, сложных эфиров, аминов, кетонов, нитрилов, силанов и их смесей. В частности, преимущественный выбор может осуществляться из алифатических простых эфиров С2-С20 и, в частности, циклических простых эфиров, предпочтительно содержащих от 3 до 5 атомов углерода, таких как тетрагидрофуран (THF) и диоксан.

Конкретные примеры описанных выше катализаторов Циглера-Натта и способов их получения приведены в патенте WO 2004106388.

Катализатор может подвергаться предварительной полимеризации в соответствии с известными способами, дающими уменьшенные количества полиолефинов, предпочтительно полипропилена или полиэтилена. Предварительная полимеризация проводится до добавления электронодонорного соединение ED, тем самым осуществляя предварительную полимеризацию промежуточного продукта а'). В соответствии с другим вариантом можно подвергнуть предварительной полимеризации твердый компонент катализатора а).

Количество полученного форполимера составляет до 500 г на грамм промежуточного продукта а') или компонент а). Предпочтительным количеством является от 0,5 до 20 г на грамм промежуточного продукта а').

Предварительную полимеризацию осуществляют с использованием подходящего сокатализатора, такого как алюминийорганическое соединение, которое, как описано выше, может использоваться в комбинации с внешним электронодонорным соединением.

Она осуществляется при температуре от 0 до 80°С, предпочтительно от 5 до 70°С, в жидкой или газовой фазе.

Особенно предпочтительными являются катализаторы, если промежуточный продукт а ') подвергается предварительной полимеризации, способом описанным выше.

Было обнаружено, что при использовании описанного выше катализатора полимеризации, состав полиэтилена по настоящему изобретению получается способом, включающем в себя следующие стадии, в любом взаимном порядке:

a) полимеризации этилена, необязательно вместе с одним или несколькими сомономерами, в газофазном реакторе в присутствии водорода.

b) сополимеризации этилена с одним или несколькими сомономерами в другом газофазном реакторе в присутствии водорода, объем которого меньше, чем на стадии а);

где, по меньшей мере, в одном из указанных газофазных реакторов, растущие полимерные частицы движутся вверх через первую зону полимеризации (реактор восходящего потока) в режиме быстрого псевдоожижения или других режимов транспортировки, покидают упомянутый реактор восходящего потока и входят во вторую зону полимеризации реактор нисходящего потока), через которую они движутся вниз в уплотненной форме под действием силы тяжести, покидают указанный реактор нисходящего потока и повторно поступают в реактор восходящего потока, создавая циркуляцию полимера между двумя указанными зонами полимеризации.

В первой зоне полимеризации (реакторе восходящего потока) режим быстрого псевдоожижения устанавливаются путем подачи газовой смеси, содержащей один или несколько олефинов (этилена и сомономеров) со скоростью большей, чем скорость переноса полимерных частиц. Скорость подачи указанной газовой смеси предпочтительно составляет от 0,5 до 15 м/с, а более предпочтительно от 0,8 до 5 м/с. Термины "скорость переноса" и "режим быстрого псевдоожижения" хорошо известны в данной области техники. Их определение смотрите, например, в книге "D. Geldart, Gas Fluidisation Technology, page 155 et seq., J. Wiley & Sons Ltd., 1986" (Д. Гелдарт, Технология газового псевдоожижения, стр. 155 и далее, издательство J. Wiley & Sons Ltd., 1986 г.).

Во второй зоне полимеризации (реактор нисходящего потока) частицы полимера стекают под действием силы тяжести в уплотненной форме, чем достигаются высокие значения плотности твердого вещества (масса полимера на единицу объема реактора), доходящие до уровня объемной плотности полимера.

Другими словами полимер стекает вертикально вниз через реактор нисходящего потока в уплотненном режиме и только небольшие количества газа уносятся полимерными частицами.

Данный способ позволяет получать на стадии а) полимер этилена с молекулярной массой ниже, чем у сополимера этилена, полученного на стадии b).

Предпочтительной является полимеризация этилена, для получения относительно низкой молекулярной массы полимера этилена (стадия а), осуществляемая выше по потоку от места сополимеризации этилена с сомономером, для получения относительно высокомолекулярного сополимера этилена (стадия b). С этой целью на стадии а) газообразная смесь, содержащая этилен, водород и инертный газ, подается в первый газофазный реактор, предпочтительно газофазный реактор с псевдоожиженным слоем. Полимеризацию проводят в присутствии ранее описанного катализатора Циглера-Натта. Предпочтительно сомономер не подается в указанный первый газофазный реактор, а полиэтилен с высокой степенью кристалличности получают на стадии а). Минимальное количество сомономера, однако, может подаваться при условии ограничения степени сополимеризации на стадии а), чтобы плотность этиленового полимера, полученного на стадии а), составляла не менее 0,960 г/см3.

Количество подаваемого водорода зависит от используемого катализатора и, в любом случае, пригодного для получения на стадии а) полимера этилена с индексом текучести расплава MIE 40-250 г/10 мин. Для того чтобы уложится в указанный выше диапазон MIE на стадии а), мольное соотношение водород/этилен предпочтительно равно от 0,5 до 3, а содержание этиленового мономера составляет от 8 до 20% от объема, предпочтительно от 10 до 15% от объема, исходя из общего объема газа в реакторе полимеризации. Оставшаяся часть загрузочной смеси представлена инертными газами и одним или несколькими сомономерами, при их наличии. Инертные газы, необходимые для отвода тепла в реакции полимеризации, обычно выбираются среди азота или насыщенных углеводородов, причем наиболее предпочтительным является пропан.

Рабочая температура в реакторе на стадии а), выбирается между 50 и 120°С, предпочтительно между 65 и 100°С, в то время как рабочее давление составляет от 0,5 до 10 МПа, предпочтительно от 2,0 до 3,5 МПа.

В предпочтительном варианте осуществления полимер этилена, полученный на стадии а) составляет от 40 до 60 вес. % от общего объема полимера этилена, полученного в общем процессе, т.е. в первом и втором реакторах, соединенных последовательно.

Полимер этилена, получаемый на стадии а) и захваченный газ пропускают через стадию разделения твердое вещество/газ, чтобы предотвратить поступление газообразной смеси из первого реактора полимеризации в реактор стадии b) (второй газофазный реактор полимеризации). Указанную газообразную смесь рециркулируют обратно в первый реактор полимеризации, а отделенный полимер этилена подается в реактор стадии b). Подходящей точкой подачи полимера во второй реактор является соединительная часть между реактором нисходящего потока и реактором восходящего потока, где концентрация твердого вещества особенно низка, и не оказывает отрицательного воздействия на режимы потока.

Рабочая температура на стадии b) находится в диапазоне от 65 до 95°С, а давление находится в диапазоне от 1,5 до 4,0 МПа. Второй газофазный реактор предназначен для производства сополимера этилена с относительно высоким молекулярным весом путем сополимеризации этилена с одним или несколькими сомономерами. Кроме того, в целях расширения молекулярно-массового распределения конечного полимера этилена, реактором на стадии б) удобно управлять установлением различных условий концентрации мономеров и водорода в реакторах восходящего и нисходящего потоков.

С этой целью на стадии b) газовая смесь, захватывающая полимерные частицы и исходящая из реактора восходящего потока, может быть полностью или частично заблокирована от попадания в реактор нисходящего потока с образованием двух зон с различным газовым составом. Это достигается путем подачи газа и/или жидкой смеси в реактор нисходящего по линиям, расположенным в соответствующей точке реактора нисходящего потока, предпочтительно в его верхней части. Указанный газ и/или жидкая смесь должны иметь состав, отличный от состава газовой смеси, присутствующей в реакторе восходящего потока. Расход указанного газа и/или жидкой смеси можно отрегулировать таким образом, чтобы образовать восходящий поток газа, противоточный потоку полимерных частичек, в частности, в верхней части, где действует разделительный поток для газовой смеси, захваченной полимерными частицами, поступающими из реактора восходящего потока. В частности, особенно предпочтительной является способность подавать смесь с низким содержанием водорода для образования более высокой молекулярной массы полимерной фракции в реакторе нисходящего потока. Один или несколько сомономеров можно подавать в реактор нисходящего потока стадии b) без этилена, пропана или других инертных газов.

Молярное соотношение водород/этилен в реакторе нисходящего потока стадии b) находится в интервале от 0,05 до 0,4, концентрация этилена от 1 до 20%, предпочтительно 3 до 10%, от объема, а концентрация сомономера от 1 до 5% от объема исходя из общего объема газа в указанном реакторе нисходящего потока. В остаток входят пропан или подобные инертные газы. Поскольку в реакторе нисходящего потока имеет место очень низкая молярная концентрация водорода, то осуществляя способ по настоящему изобретению, представляется возможной связь относительно высокого количества сомономера с фракцией полиэтилена с относительно высоким молекулярным весом.

Полимерные частицы, поступающие из ректора нисходящего потока, повторно вводятся в реактор восходящего потока на стадии b).

Концентрация указанного сомономера падает в реакторе восходящего потока в интервале от 1 до 5% от объема исходя из общего объема газа, присутствующего в реакторе восходящего потока. На практике управление содержанием сомономера осуществляется для получения желаемой плотности конечного полиэтилена. В реакторе восходящего потока стадии b) молярное соотношение водород/этилен находится в диапазоне от 0,04 до 0,4, а концентрация этилена составляет от 5 до 15% от объема, исходя из общего объема газа в указанном реакторе восходящего потока. В остаток входят пропан или другие инертные газы.

Подробнее вышеописанный процесс полимеризации представлен в патенте WO 9412568.

Помимо полиэтилена состав полиэтиленовой композиции по настоящему изобретению может включать дополнительные добавки. Данные добавки представляют собой, например: термостабилизаторы, антиоксиданты, поглотители УФ-излучения, светостабилизаторы, деактиваторы металлов, соединения, разлагаемые перекисью, основные совместные стабилизаторы, в количествах до 10 вес. %, предпочтительно до 5 вес. %; а также наполнители, армирующие материалы, пластификаторы, смазывающие вещества, эмульгаторы, пигменты, оптические отбеливатели, антипирены, антистатические порообразующие вещества или их комбинации в общем количестве от 0 до 50 вес. % в расчете на общую массу смеси.

В частности, состав полиэтилена по настоящему изобретению может содержать чистый углерод в количестве от 1 до 5 вес %, по отношению к общему массовому весу состава.

В частности, расплавляемый состав по настоящему изобретению полезен для осуществления защитных покрытий металлических труб.

Способ, используемый для покрытия металлических труб, хорошо известен в отрасли техники, к которой относится данное изобретение. Он характеризуется стадией, где состав полиэтилена расплавляется в экструдере при предпочтительных температурах в пределах от 200 до 250°С, а затем подвергается экструзии через сопло на поверхность трубы.

Обычно поверхность трубы, на которую наносится покрытие, предварительно очищается, например, путем пескоструйной обработки, и предварительно обрабатывается.

Предварительная обработка может представлять собой химическую обработку, такую как кислотное промывание, и предпочтительно включает в себя нанесение защитного слоя из эпоксидной смолы и вязкого слоя, как правило, полиолефина (полиэтилена, часто в смеси с олефиновым эластомером), содержащего полярные группы, в особенности полиолефина с привитыми полярными соединениями, такими как малеиновый ангидрид.

Таким образом, состав по настоящему изобретению можно укладывать непосредственно на поверхность трубы или на предварительно обработанную поверхность трубы, в частности, на вязкий слой, ранее уложенной на поверхность трубы.

Указанный защитный слой, например, получают с помощью порошкового покрытия, в то время как вязкий слой укладывается экструзией.

Экструдеры, как правило, используемые для укладки состава полиэтилена по настоящему изобретению, а также дополнительного вязкого слоя широко применяются в отрасли техники, к которой относится данное изобретение.

Они могут представлять собой одношнековые или двухшнековые экструдеры.

ПРИМЕРЫ

Следующие примеры приведены для иллюстрации, не ограничивающие настоящее изобретение.

Если не указано иное, то следующие способы испытания используются для определения характерных свойств, представленных в подробном описании и в примерах.

- Плотность

Определяется согласно стандарту ISO 1183 при 23°С.

- Нахождение молекулярно-массового распределения

Нахождение молекулярно-массового распределения и производных значений Mn, Mw, Mz и Mw/Mn проводилось методом высокотемпературной гельпроникающей хроматографии с использованием способа, описанного в ISO 16014-1, -2, -4, выпуска 2003 года. Характерными особенностями, в соответствии с упомянутыми стандартами ISO, являются: растворитель 1,2,4-трихлорбензол (ТСВ), температура устройств и растворов 135°С, а в качестве концентрационного детектора инфракрасный детектор IR-4 компании PolymerChar, (Валенсия, Патерна 46980, Испания), способный работать с ТСВ. Использовалась, подключенная последовательно, аппаратура компании Waters Alliance 2000, оснащенная следующими предколонками SHODEX UT-G и разделительными колонками SHODEX UT 806 Μ (3×) и SHODEX UT 807 (Showa Denko Europe GmbH, Konrad-Zuse-Platz 4, 81829 Мюнхен, Германия). Растворитель отгонялся под вакуумом в атмосфере азота и стабилизировался при 0,025 вес. % 2,6-ди-трет-бутил-4-метилфенола. Скорость потока составляла 1 мл/мин, объем впрыска составлял 500 мкл, а концентрация полимера находилась в интервале от 0,01 вес. % до 0,05 вес. % включительно. Калибровка молекулярной массы осуществлялась с помощью монодисперсных стандартов полистирола (PS) от компании Polymer Laboratories (ныне компания Agilent Technologies, Herrenberger Str. 130, 71034 Беблинген, Германия) в диапазоне от 580 г/моль до 11600000 г/моль и дополнительно с помощью гексадекана. Затем калибровочная кривая адаптировалась на полиэтилен (ПЭ) с помощью Универсального метода калибровки (Benoit H., Rempp Р. и Grubisic Ζ., & изд. J. Polymer Sci., Phys. Ред., 5, 753 (1967)). Используемые параметры уравнения Марка-Хувинка для PS составляли: kPS=0.000121 г/дл, αPS=0,706, а для РЕ kPE=0.000406 г/дл, αPE=0,725, для ТСВ при 135°С. Запись данных, калибровка и расчет проводился с использованием программы NTGPC_Control_V6.02.03 и NTGPC_V6.4.24 (Компания H&S GmbH, Хауптштрассе 36, D-55437 Оберхильбершейм, Германия) ответственно.

- Испытание на кристаллизацию при сдвиге

Данный метод используется для определения времени наступления кристаллизации при испытании на кристаллизацию при сдвиге (SIC), tonset,SIC. Образцы расплава подвергались прессованию при 200°С в течение 4 минут при давлении в 200 бар на лабораторном прессе до пластинок толщиной в 1 мм. Дисковые образцы вырезались диаметром 25 мм. Образцы вставлялись в ротационный конический вискозиметр. Использовался ротационный вискозиметр Physica MCR 301 компании AntonPaar.

Затем образец плавился внутри испытательного оборудования при 190°С в течение 4 мин, охлаждался с шагом ~10 К/мин до температуры испытания Т=125°С и отжигался течение 5 мин. Следовательно, осуществлялся устойчивый сдвиг при постоянной скорости сдвига, а динамическая вязкость отслеживалась как функция времени. Эксперимент повторялся с применением каждый раз иной скорости сдвига в пределах от 0,05 до 0,5 с-1. Время начала для SIC, tonset,SIC, берется в точке, в которой вязкость увеличилась на 50% от ее установившегося значения η@125°С. Установившееся значение является средним значением установившейся сдвиговой вязкости расплава, измеренной при определенной температуре.

Зависимость logtonset,SIC от log. скорости сдвига образует линейную функцию (типа у=Ах+В), которая экстраполируется до скорости сдвига 1000 с-1 (относительно процесса), чтобы определить значение tonset,SIC@1000.

Индекс SIC определяется по следующей формуле:

tonset, quiescent (в сек) является временем начала кристаллизации при температуре 125°С в режиме покоя, т.е. без сдвига, определенное в изотермическом режиме способом дифференциальной сканирующей калориметрии (DSC), поясняемым ниже.

MIF является индексом текучести расплава (г/10 мин), измеренным при Т=190°С с массой груза 21,6 кг и в соответствии с ISO 1133.

Данная процедура описана в следующих публикациях.

-I. Vittorias, Correlation among structure, processing and product properties, Tage 2010, Компания Wolfgang Kunze ТА Instruments, Германия.

- Wo DL, Tanner RI (2010), The impact of blue organic and inorganic pigments on the crystallization and rheological properties of isotactic polypropylene, Rheol. Acta 49, 75.

Derakhshandeh M., Hatzikiriakos S.G., Flow-induced crystallization of high-density polyethylene: the effects of shear and uniaxial extension, Rheol. Acta, 51, 315-327, 2012.

- Дифференциальная сканирующая калориметрия в изотермическом режиме

tonset,quiescent, представляет собой время начала без применения деформации при 125°С, определенной способом изотермической DSC (изотермической дифференциальной сканирующей калориметрии). Оно измеряется при 125°С устройством дифференциальной сканирующей калориметрии ТА Instruments Q2000. Определение tonset,quiescent осуществляется с использованием промышленного программного обеспечения A Universal Analysis 2000. Отбор образца и настройки соответствуют DIN EN ISO 11357-1, 2009 г. и ISO 11357-3, 1999 г.

- Комплексная вязкость в условиях сдвига

Измеряется при угловой частоте 0,02 рад/с и 190°С следующим образом.

Образцы расплава подвергались прессованию при 200°С в течение 4 минут при давлении в 200 бар до пластинок толщиной в 1 мм. Дисковые образцы диаметром 25 мм штамповались и вставлялись в вискозиметр предварительно нагретый до 190°С. Измерение осуществлялось с помощью любого промышленного ротационного вискозиметра. В данном случае использовался ротационный конический вискозиметр MCR 300 компании Anton Paar. Выполнялась так называемое качание частоты (после 4 мин отжига образца при температуре измерения) при Т=190 и постоянной амплитуде относительной деформации в 5%, а также измерение и анализ ответного изменения напряженного состояния материала в диапазоне частоты возбуждения ω от 670 до 0,02 рад/с. Для расчета реологических свойств используется стандартизированное базовое программное обеспечение, то есть: модуль хранения, G', модуль потерь, G", стадии покоя δ (=arctan(G"/G')) и комплексной вязкости, η*, как функции приложенной частоты, а именно η* (ω)=[G'(ω)2+G"(ω)2]1/2/ω. Значение последней при приложенной частоте ω 0,02 рад/сек. равно вязкости (0.02).

- Индекс текучести расплава

Определяется в соответствии с ISO 1133 при 190°С с заданной массой груза.

- Показатель длинноцепочечной разветвленности (ПДЦР)

Индекс LCB соответствует коэффициенту ветвления g', измеренному для молекулярной массы в 106 г/моль. Коэффициент ветвления g', позволяющий определять длинноцепочечную разветвленность при высоком Mw, измерялся способом гельпроникающей хроматографии (ГПХ) в сочетании с хроматографией с детектированием рассеивания лазерного излучения с кратными углами(MALLS), как описано ниже. Параметр g' представляет собой отношение измеренного среднеквадратичного радиуса инерции макромолекулы к измеренному среднеквадратичному радиусу инерции макромолекулы линейного полимера, имеющего ту же молекулярную массу. Линейные молекулы имеют g' равное 1, в то время как значения менее 1 свидетельствуют о наличии длинноцепочечной разветвленности (LCB). Значения g' как функции молекулярного веса, М, рассчитывались по формуле:

где <Rg2>, M представляет собой среднеквадратичный радиус инерции макромолекулы для фракции с молекулярным весом М.

Радиус инерции для каждой фракции, элюированной способом GPC (как описано выше, но с расходом 0,6 мл/мин и колонкой, заполненной частицами в 30 мкм), измеряется путем анализа рассеяния света под различными углами. Таким образом, способом MALLS можно определить молекулярный вес М, <Rg2>sample,M и определить g' в измеренном М=106 г/моль. Показатель <Rg2>linear ref.,M вычисляется по установленной зависимости между радиусом инерции и молекулярной массой для линейного полимера в растворе (Зимм и Штокмайер WH 1949) и подтверждением путем измерения линейного эталона РЕ на той же аппаратуре и по описанной методологии.

Данная процедура описана в следующих публикациях.

Zimm ВН, Stockmayer WH (1949) The dimensions of chain molecules containing branches and rings. J Chem Phys 17

Rubinstein M., Colby RH. (2003), Polymer Physics, Oxford University Press

- Содержание сомономера

Содержание сомономера определяют инфракрасным способом в соответствии с ASTM D 624898 на ИК-спектрометре Tensor 27 компании Bruker, откалиброванном с помощью хемометрической модели для определения боковых цепочек этила или бутила в полиэтилена для сомономера бутена или гексена соответственно. Результат сравнивается с расчетным содержанием сомономера, полученного способом расчета баланса массы в процессе полимеризации.

- Испытание на ударную прочность при растяжении с надрезом

Ударная прочность при растяжении определяется согласно ISO 8256, 2004 г. на типе 1 двойных образцов с надрезом по типу А. Испытуемые образцы (4×10×80 мм) вырезаются из листа, полученного методом прессования в форме и подготовленного в соответствии с требованиями ISO 1872-2 (средняя скорость охлаждения 15 К/мин и высокое давление во время фазы охлаждения). Испытуемые образцы имеют V-образный надрез под 45° с двух сторон. Глубина надреза составляет 2±0,1 мм, а радиус кривизны в надрезе 1,0±0,05 мм. Свободная длина между зажимами равна 30±2 мм. Перед измерением все испытываемые образцы подвергаются предварительной выдержке при постоянной температуре -30°С в течение 2-3 часов. Процедура измерений ударной прочности при растяжении, включая коррекцию энергии удара согласно типа А, описана в стандарте ISO 8256.

- Стойкость к растрескиванию под напряжением согласно испытаний всего разреза на ползучесть (FNCT)

Стойкость к растрескиванию под напряжением образцов полимера определяют в соответствии с международным стандартом ISO 16770 (FNCT) в водном растворе поверхностно-активных веществ. Подготавливался образец полимера из листа, полученного методом прессования в форме, толщиной 10 мм. Стержни с квадратным поперечным сечением (10×10×100 мм) надрезаются бритвенным лезвием с четырех сторон перпендикулярно направлению напряжения. Устройство для надрезания, описанное в М. Флейсснером в работе Kunststoffe 77 (1987 г), на стр. 45 используется для острого надреза глубиной 1,6 мм. Прилагаемая нагрузка рассчитывается исходя из силы натяжения, деленной на начальную площадь связи. Площадь связи равна оставшейся площади, т.е. общей площади поперечного сечения образца минус площадь надреза. Образец, подвергаемый испытанию на FNCT имеет размеры: 10×10 мм2 с четырьмя трапециевидными зонами надреза равными 46,24 мм2 (остальное для испытания на разрушение / разрастание трещин). Испытуемый образец нагружают согласно стандарту ISO 16770 с постоянной нагрузкой в 4 МПа при 80°С в 2% (по весу) в водном растворе неионогенного поверхностно-активного вещества ARKOPAL N100. Определяется время до разрыва образца.

Пример 1 и Сравнительные примеры 1 и 2

- Процесс подготовки

В Примере 1, способ настоящего изобретения осуществлялся в непрерывном режиме на установке, содержащей два последовательно соединенных газофазных реактора, как показано на Рисунке 1.

Пример 1

Твердый компонент катализатора получали, как описано в примере 15 патента WO 2004106388.

Полимеризация

Как описано выше, было подготовлено 20 г/ч предварительно полимеризованного твердого компонента катализатора и подано, с использованием 5 кг/ч жидкого пропана, в устройство предварительной реакции, куда дозировано подавался триизобутилалюминий (TIBA). Массовое соотношение между алкилом алюминия и твердым компонентом катализатора составляло 3:1. Стадию предварительной реакции проводили с перемешиванием при 50°С с общим временем реакции 120 минут.

Катализатор поступает в газофазный реактор полимеризации 1 Рис. 1 по линии 10. В первом реакторе этилен полимеризуется с помощью FL, качестве регулятора молекулярной массы, и в присутствии пропана, в качестве инертного разбавителя. В первый реактор по линии 9 подавалось 40 кг/ч этилена и 130 г/ч водорода. Сомономер в первый реактор не подавался.

Полимеризацию проводили при температуре 80°С и давлении 2,9 МПа. Полимер, полученный в первом реакторе, периодически выпускался по линии 11, отделялся от газа в сепараторе 12 газ/твердое вещество и повторно вводился во второй газофазный реактор по линии 14.

Полимер, полученный в первом реакторе, имел индекс текучести расплава MIE равный примерно 80 г/10 мин и плотность 0,969 кг/дм3.

Второй реактор работал в режиме полимеризации при 80°С и давлении 2,5 МПа. В реактор нисходящего потока 33 второго реактора по линии 46 вводили 16 кг/ч этилена, 1 г/ч водорода и 4,3 кг/ч 1-гексена. По линии 45 в систему рециркуляции подавалось 46.5 кг/ч пропана, 18 кг/ч этилена и 2 г/ч водорода.

В целях расширения молекулярно-массового распределения конечного полимера этилена управление вторым реактором осуществлялось установлением различных условий концентрации мономеров и водорода в реакторе восходящего потока 32 и реакторе нисходящего потока 33. Это достигалось путем подачи 75 кг/ч жидкого потока (разделительного потока) по линии 52 в верхнюю часть реактора нисходящего потока 33. Указанный жидкий поток имел состав, отличный от состава газовой смеси, присутствующей в реакторе восходящего потока. Указанные различные концентрации мономеров и водорода внутри реактора восходящего потока, реактора нисходящего потока второго реактора и состав жидкого разделительного потока приведены в Таблице 1. Жидкий поток из линии 52 отбирается от стадии конденсации в конденсаторе 49 при эксплуатационных условиях в 50°С и давлении 2,5 МПа, где часть рециркулирующего потока охлаждается и частично конденсируется. Как показано на рисунке, разделительный резервуар и насос размещены в указанном порядке, ниже по потоку от конденсатора 49. Конечный полимер периодически выпускался по линии 54.

Процесс полимеризации во втором реакторе давал фракции полиэтилена с относительно высоким молекулярным весом. В Таблице 1 приведены свойства конечного продукта. Очевидно, что индекс расплава конечного продукта снижается по сравнению с индексом этиленовой смолы, полученной в первом реакторе, показывая образование фракций с большим молекулярным весом во втором реакторе.

Первый реактор производит около 51 вес. % (отделение в вес. %) от общего количества конечной полиэтиленовой смолы, полученной в обоих первом и втором реакторах. В то же время полученный полимер имеет относительно широкое распределение молекулярной массы, о чем свидетельствуют соотношение MIF/MIP, равное 20.

Сравнительный Пример 1

Полимер в этом сравнительном примере представляет собой состав полиэтилена на основе катализатора Циглера-Натта и доступен на рынке под торговым названием Petrothene LR 5280 Ε (Equistar).

Сравнительный Пример 2

Полимер в этом сравнительном примере представляет собой состав полиэтилена на основе Cr и доступен на рынке под торговым названием H Е3450 (Borealis).

Похожие патенты RU2654700C2

название год авторы номер документа
СОСТАВ ПОЛИЭТИЛЕНА ДЛЯ ПОЛЫХ РАЗДУТЫХ ИЗДЕЛИЙ С ВЫСОКОЙ СТОЙКОСТЬЮ К РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ 2014
  • Майер Герхардус
  • Шюллер Ульф
  • Дёч Диана
  • Маркцинке Бернд Лотар
  • Визекке Енс
RU2656571C2
СПОСОБЫ ПРОИЗВОДСТВА ПОЛИЭТИЛЕНА И ЕГО СОСТАВЫ 2014
  • Мавридис, Харилаос
  • Майер, Герхардус
  • Шюллер, Ульф
  • Дёч, Диана
  • Маркцинке, Бернд
  • Витторияс, Ияковос
RU2612250C1
ПОЛИЭТИЛЕНОВАЯ КОМПОЗИЦИЯ, ОБЛАДАЮЩАЯ ВЫСОКОЙ СТОЙКОСТЬЮ К РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ 2015
  • Маннебах Герд
  • Маркцинке Бернд, Лотар
  • Майер Герхардус
  • Шюллер Ульф
  • Витторияс Ияковос
  • Мавридис Харилаос
RU2654479C1
ПОЛИЭТИЛЕНОВАЯ КОМПОЗИЦИЯ, ОБЛАДАЮЩАЯ ВЫСОКОЙ СТОЙКОСТЬЮ К РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ 2015
  • Маннебах Герд
  • Маркцинке Бернд Лотар
  • Майер Герхардус
  • Шюллер Ульф
  • Витторияс Ияковос
  • Мавридис Харилаос
RU2655381C1
СОСТАВ ПОЛИЭТИЛЕНА ДЛЯ ВЫДУВНОГО ФОРМОВАНИЯ ИЗДЕЛИЙ С ВЫСОКОЙ СТОЙКОСТЬЮ К РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ 2017
  • Дёч, Диана
  • Маркцинке, Бернд Лотар
  • Майер, Герхардус
  • Шюллер, Ульф
  • Дамм, Эльке
  • Фибла, Клаудио
RU2722013C1
СОСТАВ ПОЛИЭТИЛЕНА, ОБЛАДАЮЩИЙ ВЫСОКИМИ МЕХАНИЧЕСКИМИ СВОЙСТВАМИ И ТЕХНОЛОГИЧНОСТЬЮ ПРИ ОБРАБОТКЕ 2016
  • Витторияс Ияковос
  • Маркцинке Бернд Лотар
  • Майер Герхардус
  • Шюллер Ульф
  • Маус Андреас
  • Мавридис Харилаос
  • Дёч Диана
RU2688145C1
СОСТАВ ПОЛИЭТИЛЕНА ДЛЯ ПРОИЗВОДСТВА ПЛЕНОК 2016
  • Витторияс, Ияковос
  • Майер, Герхардус
  • Шюллер, Ульф
  • Маус, Андреас
  • Визекке, Енс
  • Мавридис, Харилаос
RU2653854C1
СОСТАВ ПОЛИЭТИЛЕНА ДЛЯ ЛИТЬЯ ПОД ДАВЛЕНИЕМ 2015
  • Майер Герхардус
  • Шюллер Ульф
  • Мавридис Харилаос
  • Маркцинке Бернд Лотар
  • Дёч Диана
  • Визекке Енс
RU2694048C2
СОСТАВ ПОЛИЭТИЛЕНА, ОБЛАДАЮЩИЙ ВЫСОКОЙ СТЕПЕНЬЮ РАЗБУХАНИЯ 2017
  • Дёч, Диана
  • Маркцинке, Бернд Лотар
  • Майер, Герхардус
  • Шюллер, Ульф
  • Заттель, Райнер
  • Биссон, Петер
RU2720803C1
ПОЛИЭТИЛЕНОВАЯ КОМПОЗИЦИЯ ДЛЯ ВЫДУВНОГО ФОРМОВАНИЯ С ВЫСОКОЙ СТЕПЕНЬЮ НАБУХАНИЯ И ВЫСОКОЙ УДАРНОЙ ПРОЧНОСТЬЮ 2017
  • Дёч, Диана
  • Маркцинке, Бернд Лотар
  • Майер, Герхардус
  • Шюллер, Ульф
  • Дамм, Эльке
  • Фибла, Клаудио
RU2720236C1

Иллюстрации к изобретению RU 2 654 700 C2

Реферат патента 2018 года СОСТАВ ПОЛИЭТИЛЕНА С ВЫСОКОЙ СТОЙКОСТЬЮ К УДАРНЫМ НАГРУЗКАМ И РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ

Изобретение относится к составу полиэтилена, пригодного для производства защитных покрытий металлических труб, в частности стальных труб, а также к способу получения состава полиэтилена. Состав имеет плотность от 0,938 до 0,948 г/см3, отношение MIF/MIP от 15 до 25 и MIF от 30 до 45 г/10 мин, где MIF представляет собой индекс текучести расплава при 190° С с массой груза 21,60 кг, a MIP представляет собой индекс текучести расплава при 190° С с массой груза 5 кг. При этом состав полиэтилена обладает Mz, равным или превышающим 1000000 г/моль, и показателем длинноцепочечной разветвленности (ПДЦР), равным или превышающим 0,55. Состав по изобретению обладает высокой скоростью обработки и/или уменьшением температур формования, стабильностью показателей текучести, а также улучшенным балансом стойкости к ударным нагрузкам и растрескиванию под напряжением (ESCR) при низких температурах. 4 н. и 8 з.п. ф-лы, 1 ил., 1 табл., 3 пр.

Формула изобретения RU 2 654 700 C2

1. Состав полиэтилена, обладающий следующими признаками:

1) плотностью от 0,938 до 0,948 г/см3;

2) отношением MIF/MIP от 15 до 25, где MIF представляет собой индекс текучести расплава при 190°С с массой груза 21,60 кг, а MIP представляет собой индекс текучести расплава при 190°С с массой груза 5 кг, определенными согласно стандарту ISO 1133;

3) MIF от 30 до 45 г/10 мин;

4) показателем Mz, равным или превышающим 1000000 г/моль;

5) показателем длинноцепочечной разветвленности (ПДЦР), равным или превышающим 0,55;

отличающийся тем, что ПДЦР представляет собой отношение измеренного среднеквадратичного радиуса инерции макромолекулы Rg, измеренного способом GPC-MALLS (гельфильтрационной хроматографии с детектированием рассеивания лазерного излучения с кратными углами), к измеренному среднеквадратичному радиусу инерции макромолекулы линейного полимера, имеющего ту же молекулярную массу.

2. Состав полиэтилена по п. 1 дополнительно обладающий:

6) вязкостью (0,02) от 25000 до 35000 Па⋅с;

отличающийся тем, что вязкость (0,02) представляет собой комплексную вязкость в условиях сдвига при угловой частоте 0,02 радиан в секунду, измеренную ротационным коническим вискозиметром при 190°С.

3. Состав полиэтилена по пп. 1 и 2, включающий в себя или содержащий один или несколько сополимеров этилена.

4. Состав полиэтилена по п. 3, содержащий сомономер в количестве от 1,5 до 6 вес. %.

5. Состав полиэтилена по п. 1 или 2, полученный с использованием катализатора полимеризации Циглера-Натта.

6. Состав полиэтилена по п. 5, отличающийся тем, что катализатор полимеризации Циглера-Натта содержит продукт реакции:

a) твердого компонента катализатора, содержащего соединение Ti, на носителе MgCl2, причем указанный компонент получают посредством реакции соединения титана с MgCl2 или прекурсора соединения Mg, необязательно в инертной среде, получая, таким образом, промежуточный продукт а') и затем подвергая продукт а') предварительной полимеризации и реакции с электронодонорным соединением;

b) алюминийорганического соединения и, необязательно,

c) внешнего электронодонорного соединения.

7. Состав полиэтилена по п. 1, обладающий, по меньшей мере, одним из следующих дополнительных признаков:

- Mw, равным или меньшим 300000 г/моль;

- Mw/Mn от 15 до 30;

- MIP: 1,2-2,5 г/10 мин;

- индексом SIC от 3 до 5;

отличающийся тем, что индекс SIC представляет собой индекс испытания на кристаллизацию при сдвиге, рассчитанный по следующей формуле:

где tonset,SIC@1000 измеряется в секундах и представляет собой время, необходимое для начала кристаллизации при скорости сдвига 1000 с-1, a tonset, quiescent измеряется в секундах и представляет собой время начала кристаллизация при температуре 125°С в состоянии покоя, определенное в изотермическом режиме способом дифференциальной сканирующей калориметрии.

8. Состав полиэтилена по п. 1, содержащий:

A) 40-60 вес. % гомополимера или сополимера этилена с плотностью, равной или большей 0,960 г/см3, и индексом текучести расплава МIE при 190°С с массой груза 21,6 килограмма, равным 40-250 г/10 мин, в соответствии с ISO 1133;

B) 40-60 вес. % любого сополимера этилена с величиной MIE меньшей MIE из пункта А).

9. Способ покрытия металлических труб, содержащий стадию, отличающуюся тем, что состав полиэтилена по п. 1 расплавляется в экструдере, а затем подвергается экструзии на поверхность трубы, причем указанная поверхность трубы необязательно подвергается предварительной обработке.

10. Металлические трубы, покрытые составом полиэтилена по п. 1.

11. Способ приготовления состава полиэтилена по п. 1, отличающийся тем, что все стадии полимеризации осуществляются в присутствии катализатора полимеризации Циглера-Натта на носителе MgCl2.

12. Способ по п. 11, включающий в себя следующие стадии в любом взаимном порядке:

a) полимеризации этилена, необязательно вместе с одним или несколькими сомономерами, в газофазном реакторе в присутствии водорода;

b) сополимеризации этилена с одним или несколькими сомономерами в другом газофазном реакторе в присутствии водорода, объем которого меньше, чем на стадии а);

отличающийся тем, что, по меньшей мере, в одном из указанных газофазных реакторов растущие полимерные частицы движутся вверх через первую зону полимеризации в режиме быстрого псевдоожижения или других режимах транспортировки; покидают упомянутый реактор восходящего потока; входят во вторую зону полимеризации, через которую они движутся вниз в уплотненной форме под действием силы тяжести; покидают указанную вторую зону полимеризации и повторно поступают в первую зону полимеризации, создавая циркуляцию полимера между двумя указанными зонами полимеризации.

Документы, цитированные в отчете о поиске Патент 2018 года RU2654700C2

EP 1972642 A1, 24.09.2008
ПОЛИЭТИЛЕНОВАЯ ФОРМОВОЧНАЯ МАССА С УЛУЧШЕННЫМ СООТНОШЕНИЕМ СТОЙКОСТИ К РАСТРЕСКИВАНИЮ И ЖЕСТКОСТИ И СТЕПЕНЬЮ РАЗДУВАНИЯ, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ 2000
  • Бертхольд Йоахим
  • Бем Людвиг
  • Эндерле Йоханнес-Фридрих
  • Шуббах Райнхард
RU2249018C2
СПОСОБ СБОРКИ ПОЛУПРОВОДНИКОВОГО МОСТА 1992
  • Политыко А.М.
  • Федяев Р.В.
  • Рождественский Г.Ф.
RU2072588C1
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
RU 2010125249 A, 27.12.2011.

RU 2 654 700 C2

Авторы

Майер Герхардус

Шюллер Ульф

Дёч Диана

Маркцинке Бернд Лотар

Вогт Хайнц

Даты

2018-05-22Публикация

2014-06-19Подача