СИСТЕМА РЕГУЛИРОВАНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ-СБОРНИКЕ Российский патент 2018 года по МПК G05D9/12 

Описание патента на изобретение RU2656113C1

Изобретение относится к области автоматического цифрового регулирования и предназначено для управления системами наполнения емкостей жидкостью. Сферами применения изобретения могут быть, к примеру, участки первого подъема систем водоснабжения населенных пунктов и промышленных объектов.

Известна цифровая система регулирования расхода жидкости с коррекцией по уровню в емкости-сборнике, которая содержит последовательно-соединенные элемент сравнения - сумматор, цифровой регулятор расхода жидкости, объект регулирования, охваченные обратной связью, цифровые корректирующие пропорциональный и интегральный регуляторы, элементы сравнения, блок включения корректирующего пропорционального регулятора и фильтр низких частот, при этом на вход фильтра низких частот поступают текущие значения уровня жидкости в емкости-сборнике с выхода объекта регулирования, а выход фильтра низких частот соединен через введенный элемент сравнения со входом корректирующего интегрального регулятора, выход которого соединен с первым входом элемента сравнения - сумматора, кроме того, текущие значения уровня жидкости поступают на вход блока включения корректирующего пропорционального регулятора, а выход блока включения соединен через введенный второй элемент сравнения со входом корректирующего пропорционального регулятора, выход которого соединен со вторым входом элемента сравнения сумматора (см. патент РФ №2348960, МПК G05D 7/00; G05D 9/12, опубл. 10.03.2009).

Недостатком данной системы является невозможность применения в условиях низких температур окружающей среды, вследствие замерзания жидкости в трубопроводе при пониженном расходе. Данный факт значительно ограничивает сферу применения системы в области водоснабжения населенных пунктов и промышленных предприятий, поскольку подавляющее большинство трубопроводов прокладывается по поверхности земли или на незначительном заглублении в условиях низких температур окружающей среды, причем замерзание жидкости в них предотвращается путем повышения расхода.

Наиболее близкой по совокупности технических признаков является цифровая система регулирования уровня жидкости в емкости-сборнике, взятая за прототип, содержащая последовательно соединенные элементы сравнения, регулятор расхода жидкости в виде частотного преобразователя, объект регулирования, охваченные обратной связью, пропорциональный интегральный и дифференциальный регуляторы по уровню и температуре, сумматоры, блок расчета расхода, основной и резервные насосные агрегаты (см. патент РФ №2593649, МПК G05D 9/00, G05D 7/00, G05D 23/00, опубл. 10.08.2016).

Недостатком данной системы является недостаточная надежность в связи с отсутствием диагностики технического состояния насосных агрегатов и возможности автоматического подключения резервного насосного агрегата при возникновении ситуации вероятного выхода основного насосного агрегата из строя.

Технический результат настоящего изобретения заключается в повышении надежности системы регулирования уровня жидкости в емкости-сборнике.

Технический результат достигается тем, что система регулирования уровня жидкости в емкости-сборнике, содержащая последовательно соединенные элементы сравнения, регулятор расхода жидкости в виде частотного преобразователя, объект регулирования, охваченные обратной связью, пропорциональный интегральный и дифференциальный регуляторы по уровню и температуре, сумматоры, блок расчета расхода, основной и резервные насосные агрегаты, отличается тем, что система снабжена блоком диагностики электродвигателей основного и резервных насосных агрегатов, включающим микроконтроллер, связанный с датчиками тока и напряжения, установленными на линии питания электродвигателей, и датчиками температуры подшипников насосов насосных агрегатов, система также снабжена электромагнитными контакторами, установленными между частотным преобразователем и насосными агрегатами, и запорными клапанами, расположенными между насосными агрегатами и емкостью-сборником.

На фигуре 1 приведена схема системы регулирования уровня жидкости в емкости-сборнике с двумя резервными насосными агрегатами. Данная система содержит следующие элементы: емкость-источник жидкости 1; основной (активный) насосный агрегат 2; резервные насосные агрегаты 3, 4; запорные клапаны 5; расходомер 6; датчик температуры жидкости, установленный в конечной части трубопровода 7; датчик уровня жидкости в емкости-сборнике 8; емкость-сборник 9; конечный потребитель 10; блок управления насосными агрегатами 11, содержащий элементы сравнения, пропорциональный интегральный и дифференциальный регуляторы по уровню и температуре, сумматоры, блок расчета расхода, блок управления контакторами и запорными клапанами, интерфейс ввода/вывода; частотный преобразователь 12; пакет электромагнитных контакторов 13; микроконтроллер 14, к которому подключаются датчики питающего напряжения 15 и тока 16, устанавливаемые на линии питания основного насосного агрегата от частотного преобразователя и на вводе питания резервных насосов, а также датчики температуры подшипников 17 насосов насосных агрегатов.

Для повышения надежности системы наполнения емкости-сборника жидкостью применяются резервные насосы (обычно два), которые дублируют основной насос в случае его поломки, а также могут применяться для увеличения производительности системы, в случае недостаточной мощности основного насоса. Целесообразно осуществлять переключение между основным и резервными насосными агрегатами в автоматическом режиме. Для этого используется пакет электромагнитных контакторов 13, управляемый блоком 11, который позволяет подключить к частотному преобразователю любой (но только один) из имеющихся насосных агрегатов, который после этого будет являться основным. Кроме того, для увеличения производительности системы и проведения диагностики резервных насосных агрегатов, необходимо наличие дополнительной питающей линии, которая также через пакет контакторов 13 будет иметь возможность запитать любой (но только один) резервный насосный агрегат в обход частотному преобразователю. Для перераспределения потоков жидкости, при переключении насосов, в системе имеются запорные клапаны 5, дистанционно управляемые блоком 11.

Для того чтобы вовремя осуществить переключение основного насосного агрегата на резервный, необходимо постоянно проводить диагностику его технического состояния, причем без нарушения технологического процесса. При этом выявление дефекта на ранней стадии позволит предотвратить нештатные ситуации и минимизировать затраты на ремонт насосных агрегатов.

В связи с неблагоприятными для электрооборудования условиями окружающей среды на объектах водоснабжения, возникает угроза повреждения или износа даже простаивающих резервных насосных агрегатов. Соответственно, целесообразно периодически выполнять диагностику их технического состояния. При этом, в случае угрозы выхода основного насосного агрегата из строя, необходимо переключаться на резервный насосный агрегат с наименьшим износом.

Для осуществления диагностики основного и резервных насосных агрегатов, в системе имеется микроконтроллер 14, к аналогово-цифровому преобразователю которого подключаются датчики напряжения 15 и тока 16, снимающие параметры с трехфазной линии, питающей основной насос через частотный преобразователь, и линии, питающей резервные насосы, а также датчики температуры подшипников 17 насосов насосных агрегатов.

Диагностика насосных агрегатов и выбор основного насосного агрегата выполняется в специальной программе микроконтроллера 14 параллельно основному алгоритму наполнения емкости-сборника жидкостью. На фигуре 2 приводится блок-схема алгоритма данной программы.

Алгоритм работает следующим образом.

В блоке 18 отражены основные данные программы: Td - текущий такт времени; Tdu - интервал времени проведения диагностики и перераспределения нагрузки между насосными агрегатами; Kd - общее количество насосных агрегатов; Dt - номер текущего основного насосного агрегата; Dp[,] - двумерный массив, содержащий набор ключевых, заранее заданных параметров насосных агрегатов, выгружаемый из базы данных насосных агрегатов 19. База данных содержит m записей по n параметров для наиболее распространенных моделей насосных агрегатов. При первом запуске системы создается массив из Kd записей, который заполняется из базы, причем поиск нужных насосных агрегатов осуществляется ассоциативно по нулевому параметру, содержащему модель насосного агрегата и его мощность; Kl[Kd] - массив, содержащий уровень износа каждого насосного агрегата; i1 - счетчик основного цикла; Мах - номер резервного насоса, с наименьшим уровнем износа.

В блоке 20 проверяется условие наступления момента времени выполнения алгоритма диагностики. Блоки 21-29 реализуют цикл расчета износа всех насосных агрегатов. Если текущий насосный агрегат с индексом i1 не является основным, то для выполнения диагностики, этот насосный агрегат кратковременно подключается к дополнительной питающей линии при помощи блока 23, отправляющего сигнал на блок управления 11 для замыкания исполнительного механизма (электромагнитного контактора) с индексом i1 в пакете 13. При этом основной насосный агрегат продолжает работать от частотного преобразователя.

Далее в блоке 24 в массив Kl записывается информация о текущем уровне износа соответствующего насосного агрегата, получаемая в цифровом виде через блок 25 от датчиков напряжения 15, тока 16 и температуры 17. Уровень износа оценивается в процентном соотношении. Если параметры, получаемые с датчиков, свидетельствуют о возникновении аварийной ситуации (обрыв фазы, перегрузка, несимметрия питающего напряжения, перегрев электродвигателя), то в качестве уровня износа указывается величина 101. В противном случае уровень износа рассчитывается по следующей формуле:

где: Rтек(i1, j) - текущее значение полного сопротивления j-й статорной обмотки электродвигателя i1-го насосного агрегата, рассчитываемое известными методами по величинам тока и напряжения на данной обмотке, измеренным датчиками обратной связи; Dp[i1, 3] - коэффициент влияния состояния обмотки электродвигателя на общий уровень износа i1-го насосного агрегата. Данный коэффициент хранится в базе данных на каждую модель насосного агрегата, для которой определяется экспериментальным методом; Dp[i1, 4] - номинальное значение полного сопротивления статорных обмоток электродвигателя i1-го насосного агрегата. Данная величина хранится в базе данных на каждую модель насосного агрегата; Ттек(i1) - текущее значение температуры подшипников i1-го насосного агрегата, измеренное датчиком обратной связи; Dp[i1, 5] - коэффициент влияния температуры на общей уровень износа i1-го насосного агрегата. Данный коэффициент хранится в базе данных на каждую модель насосного агрегата, для которой определяется экспериментальным методом; Dp[i1, 6] - номинальное значение температуры i1-го насосного агрегата.

Затем, в блоках 27 и 28 определяется резервный насосный агрегат с наименьшим уровнем износа. Номер данного насосного агрегата сохраняется в переменной Мах.

После выполнения диагностики, в блоке 30 производится проверка состояния основного насосного агрегата с номером Dt. Если уровень его износа больше или равен определенному пороговому уровню, хранящемуся в параметре Dp[Dt, 1] для соответствующей модели насосного агрегата, то производится переход к блоку 31, иначе происходит выход из алгоритма диагностики.

В блоке 31 проверяется, достиг ли уровень износа основного насосного агрегата критической величины, хранящейся в параметре Dp[Dt, 2] для соответствующей модели насосного агрегата. Если нет, то в блоке 37, через интерфейс ввода/вывода блока 11, выводится информационное сообщение об износе и возможном скором выходе из строя основного насосного агрегата и производится выход из алгоритма диагностики, иначе происходит переход к блоку 32, где проверяется наличие аварийной ситуации с кодом 101. Далее в блоках 36 и 39 выводятся соответствующие сообщения либо об аварии основного насосного агрегата, либо о достижении им критического уровня износа. После этого производится переход к блоку 33, где проверяется, не достиг ли износ резервного насосного агрегата с номером Мах критической величины. Если уровень износа допустимый, то в блоке 38 выводится сообщение о смене основного насосного агрегата и в блоке 35 номеру основного насосного агрегата Dt присваивается номер Мах резервного, который затем передается блоку 11. Если износ резервного насосного агрегата с номером Мах критический, то в блоке 40 выводится сообщение об аварии, и номеру основного насосного агрегата присваивается отрицательное значение.

Предложенное изобретение позволяет повысить надежность системы наполнения емкости-сборника жидкостью, за счет предотвращения аварийных ситуаций, связанных с внезапным выходом из строя основного насосного агрегата, путем проведения его постоянной диагностики, оповещения персонала в случае сильного износа основного насосного агрегата и автоматического подключения резервного насосного агрегата с наименьшим износом, при угрозе возникновения аварии основного насосного агрегата.

Похожие патенты RU2656113C1

название год авторы номер документа
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ-СБОРНИКЕ И ЦИФРОВАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Палкин Георгий Александрович
  • Горбунов Роман Викторович
  • Суворов Иван Флегонтович
  • Дейс Данил Александрович
RU2593649C1
СИСТЕМА УПРАВЛЕНИЯ ЦЕНТРОБЕЖНЫМ НАСОСОМ 2021
  • Александров Виктор Иванович
  • Коржев Александр Александрович
  • Ватлина Анна Михайловна
RU2770528C1
УПРАВЛЕНИЕ ЭЛЕКТРИЧЕСКИМИ ДВИГАТЕЛЯМИ НАСОСНОЙ УСТАНОВКИ ПРОТИВОПОЖАРНОЙ СИСТЕМЫ 2011
  • Ахо Маркку
  • Кеттунен Веса
  • Пеннанен Паси
RU2577708C2
Устройство управления одноконтурной зависимой системой отопления 2023
  • Палкин Георгий Александрович
  • Горбунов Роман Викторович
  • Долгих Роман Сергеевич
  • Иванова Анастасия Андреевна
  • Лягоцкий Максим Владимирович
RU2825177C1
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМ ПРОЦЕССОМ ПОДАЧИ ГАЗОВОГО КОНДЕНСАТА В МАГИСТРАЛЬНЫЙ КОНДЕНСАТОПРОВОД 2017
  • Николаев Олег Александрович
  • Арабский Анатолий Кузьмич
  • Гункин Сергей Иванович
  • Датков Дмитрий Иванович
  • Ефимов Андрей Николаевич
  • Железный Сергей Петрович
  • Пономарев Владислав Леонидович
  • Смердин Илья Валериевич
  • Талыбов Этибар Гурбанали Оглы
  • Хасанов Олег Сайфиевич
  • Турбин Александр Александрович
RU2647288C1
СПОСОБ АДАПТИВНОГО АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ НАДДУВОЧНОГО ВОЗДУХА ДИЗЕЛЬ-ГЕНЕРАТОРА 2018
  • Радченко Петр Михайлович
RU2714022C2
УСТРОЙСТВО ДЛЯ ЭКСПЛУАТАЦИИ ПОГРУЖНОГО ЭЛЕКТРОНАСОСНОГО АГРЕГАТА В НЕФТЕГАЗОВОЙ СКВАЖИНЕ 2004
  • Жильцов В.В.
  • Шендалева Е.В.
  • Югай К.К.
  • Дударев А.В.
RU2256065C1
УСТРОЙСТВО ДЛЯ ОПЕРАТИВНОГО УПРАВЛЕНИЯ РЕЖИМАМИ РАБОТЫ 1996
  • Журавлев В.С.
  • Семченко П.Т.
RU2140524C1
Система регулирования электропривода насосного агрегата и способ работы системы 2018
  • Усынин Юрий Семёнович
  • Бычков Антон Евгеньевич
  • Функ Татьяна Андреевна
  • Желтов Артём Сергеевич
  • Савостеенко Никита Вадимович
  • Чупин Сергей Анатольевич
  • Осинцев Константин Владимирович
  • Осинцев Владимир Валентинович
  • Богаткин Владимир Иванович
RU2687175C1
АВТОМАТИЗИРОВАННЫЙ КОМПЛЕКС ИНЖЕКЦИИ РАСТВОРА ИНГИБИТОРА КОРРОЗИИ ДЛЯ СКВАЖИН 2017
  • Кожакин Владимир Васильевич
  • Екотов Андрей Геннадиевич
  • Свиридов Анатолий Георгиевич
  • Панащенко Дмитрий Константинович
  • Родованов Виталий Евгеньевич
RU2676779C2

Иллюстрации к изобретению RU 2 656 113 C1

Реферат патента 2018 года СИСТЕМА РЕГУЛИРОВАНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ-СБОРНИКЕ

Изобретение относится к области автоматического цифрового регулирования и предназначено для управления системами наполнения емкостей жидкостью. Сферами применения изобретения могут быть, к примеру, участки первого подъема систем водоснабжения населенных пунктов и промышленных объектов. Система регулирования уровня жидкости в емкости-сборнике содержит последовательно соединенные элементы сравнения, регулятор расхода жидкости в виде частотного преобразователя, объект регулирования, охваченные обратной связью, пропорциональный интегральный и дифференциальный регуляторы по уровню и температуре, сумматоры, блок расчета расхода, основной и резервные насосные агрегаты. Система снабжена блоком диагностики электродвигателей основного и резервных насосных агрегатов, включающим микроконтроллер, связанный с датчиками тока и напряжения, установленными на линии питания электродвигателей, и датчиками температуры подшипников насосов насосных агрегатов, система также снабжена электромагнитными контакторами, установленными между частотным преобразователем и насосными агрегатами, и запорными клапанами, расположенными между насосными агрегатами и емкостью-сборником. Технический результат настоящего - повышение надежности системы регулирования уровня жидкости в емкости-сборнике. 2 ил.

Формула изобретения RU 2 656 113 C1

Система регулирования уровня жидкости в емкости-сборнике, содержащая последовательно соединенные элементы сравнения, регулятор расхода жидкости в виде частотного преобразователя, объект регулирования, охваченные обратной связью, пропорциональный интегральный и дифференциальный регуляторы по уровню и температуре, сумматоры, блок расчета расхода, основной и резервные насосные агрегаты, отличающаяся тем, что система снабжена блоком диагностики электродвигателей основного и резервных насосных агрегатов, включающим микроконтроллер, связанный с датчиками тока и напряжения, установленными на линии питания электродвигателей, и датчиками температуры подшипников насосов насосных агрегатов, система также снабжена электромагнитными контакторами, установленными между частотным преобразователем и насосными агрегатами, и запорными клапанами, расположенными между насосными агрегатами и емкостью-сборником.

Документы, цитированные в отчете о поиске Патент 2018 года RU2656113C1

СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ-СБОРНИКЕ И ЦИФРОВАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Палкин Георгий Александрович
  • Горбунов Роман Викторович
  • Суворов Иван Флегонтович
  • Дейс Данил Александрович
RU2593649C1
ЦИФРОВАЯ СИСТЕМА РЕГУЛИРОВАНИЯ РАСХОДА ЖИДКОСТИ С КОРРЕКЦИЕЙ ПО УРОВНЮ В ЕМКОСТИ-СБОРНИКЕ 2007
  • Кудряшов Владимир Сергеевич
  • Алексеев Михаил Владимирович
  • Александров Илья Александрович
RU2348960C1
Световое реле 1929
  • Депрейс А.А.
SU17374A1
ПРИЦЕЛЬНО-НАВИГАЦИОННЫЙ КОМПЛЕКС 1999
  • Джанджгава Г.И.
  • Горб В.С.
  • Демин И.М.
  • Кавинский В.В.
  • Коркишко Ю.Ю.
  • Логинов В.И.
  • Негриков В.В.
  • Орехов М.И.
  • Рогалев А.П.
  • Семаш А.А.
  • Сопин В.П.
  • Шкред В.К.
RU2168154C1

RU 2 656 113 C1

Авторы

Суворов Иван Флегонтович

Палкин Георгий Александрович

Горбунов Роман Викторович

Даты

2018-05-31Публикация

2017-06-28Подача