Изобретение относится к области строительства, а именно к реконструкции, восстановлению или возведению сейсмостойких зданий и сооружений.
Наиболее близким техническим решением является сейсмостойкое сооружение, содержащее горизонтальные и вертикальные несущие конструкции, причем в, по меньшей мере, одной несущей вертикальной конструкции выполнен, по крайней мере, один проем, а предпочтительно несколько проемов, в каждом из которых размещена демпферная многослойная виброизолирующая опора, состоящая из верхней и нижней опорных пластин и размещенных между ними чередующихся между собой металлических и эластомерных слоев, причем упомянутые пластины жестко связаны с вертикальной конструкцией посредством соединительных элементов или усиливающих поясов, расположенных в проемах (см. RU 123433 U1, E04G 23/00 - прототип).
Недостатком указанных известных технических решений являются: техническая сложность устройства виброизоляторов при высоких уровнях нагружения на вертикальные конструкции (высокие здания) для реконструируемых, восстанавливаемых объектов, а также вновь возводимых опасных, технически сложных и уникальных зданий и сооружений, когда использование предложенных способов недостаточно квалифицированными специалистами может привести к повреждению конструкций, а иногда и к прогрессирующему обрушению целого здания (сооружения) или его части. Кроме того, известные способы установки виброизоляторов отличаются высокой трудоемкостью и сложностью, что делает их экономически неэффективными при использовании для реконструкции и восстановления (сейсмоусиления) существующих зданий и сооружений массовой застройки.
Технически достижимый результат - повышение устойчивости сооружений к воздействиям ветровых нагрузок и землетрясениям за счет размещения в них многослойных виброизолирующих опор, воспринимающих вертикальные нагрузки во время использования и активно воспринимающих горизонтальные нагрузки во время сейсмической активности без необратимых и критических разрушений или с минимальными деформациями, что повышает сейсмическую надежность и безопасность здания или сооружения.
Это достигается тем, что в сейсмостойком сооружении, содержащем виброизолированный фундамент, горизонтальные и вертикальные несущие конструкции с системой виброизоляции, внутренние перегородки, кровлю здания, а также дверные и оконные проемы с усилением, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером.
На фиг.1 изображен общий вид сейсмостойкой конструкции здания, на фиг.2 - разрез междуэтажного перекрытия здания, на фиг.3 - схема виброизоляции цокольного этажа в основании здания, на фиг.4 - схема виброизоляции железобетонной плиты в основании здания, на фиг.5 - общий вид виброизолятора, фиг.6 - разрез А-А виброизолятора, на фиг.7 изображен кирпич (несущий элемент) в аксонометрии с двумя отверстиями; на фиг.8 - сейсмостойкая кирпичная стеновая панель, вид в плане, на фиг.9 - схема демпфирующего стержня кирпичной стеновой панели.
Сейсмостойкое сооружение (фиг.1) содержит виброизолированный фундамент 1, горизонтальные 3 и вертикальные 2 несущие конструкции с системой виброизоляции, внутренние перегородки 4, кровлю здания 5, дверные 6 и оконные проемы с усилением, а также облицовочную сейсмостойкую кирпичную панель 7, расположенную между колоннами.
Конструкция пола выполнена на упругом основании (фиг.2) и содержит установочную плиту 8, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 9 межэтажного перекрытия с полостями 10 через слои вибродемпфирующего материала 11 и гидроизоляционного материала 12 с зазором 13 относительно несущих стен 2 здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 8 по всем направлениям слои вибродемпфирующего материала 11 и гидроизоляционного материала 12 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 2 и базовой несущей плите 9 перекрытия.
Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 9 перекрытия (на фиг.2 показана плита 9 перекрытия только для одного этажа здания и с одной стороны несущих стен 2) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 14 и 15, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 16, воспринимающих горизонтальные статические и динамические нагрузки. Схема виброизоляторов, выполненных из эластомера, представлена на фиг.5-6. Каждый из виброизоляторов 14, 15, 16 состоит из жестко связанных между собой резиновых плит: верхней 32 и нижней 33 (фиг.5 и 6), в которых выполнены сквозные отверстия 34, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-го порядка, обеспечивающие равночастотность системы виброизоляции в целом. Отверстия 34 имеют в сечении форму, обеспечивающую равночастотность виброизолятора.
Система виброизоляции фундамента 17 с цокольным этажом 18 (фиг.3) осуществляется путем установки поднимаемой части здания на виброизоляторы (фиг.5-6) с одновременной отрезкой его швами типа антисейсмических (на чертеже не показано) от соседних зданий и окружающего грунта. Для защиты от вибраций вертикального направления виброизоляторы устанавливаются в ниши стен цокольного этажа 18 на участки ленточного фундамента 19. Каждый комплект системы виброизоляции состоит из металлической плиты, 4-х виброизолятоов (фиг.5 и 6), 2-х листов наждачной бумаги для исключения возможности скольжения элементов фундамента и 2-х опорных железобетонных блоков (на чертеже не показано).
Для защиты здания от вибраций горизонтального направления, распространяющихся по грунту, устраивается система виброизоляции по вертикальным граням наружных стен 20 цокольного этажа 18 на уровне фундамента 17 и перекрытий 9 (фиг.2). С этой целью вокруг всего здания устраивается подпорная стенка, контрфорсы 21 которой соединяются с торцами несущих стен через виброизоляторы (фиг.5 и 6), которые устанавливаются в нишах 22 контрфорсов 21. Конструкция виброизолированного здания имеет повышенную жесткость.
Цокольный этаж здания выполнен в виде пространственной рамной конструкции из монолитного железобетона с включенными в раму перекрытием и перегородками (на чертеже не показано). Такая конструкция обеспечивает повышенную жесткость здания, компенсирующую ее снижение из-за опирания на виброизоляторы. С этой же целью усилены перемычки над дверными и иными проемами (на чертеже не показано) так, чтобы жесткость перегородок не изменилась, а фундамент 17 выполнен в виде ленточной перекрестной конструкции высотой порядка 50 см, выступающей над фундаментной плитой-стяжкой.
На фиг.4 представлена схема виброизоляции железобетонной плиты, состоящей из связанных между собой железобетонных балок 23 в основании здания, которая является вариантом виброзащиты без домкратов и включает в себя, по крайней мере, четыре сетчатых виброизолятора 24 (фиг.5 и 6), устанавливаемых между металлической плитой 25 и железобетонной балкой 23, расположенной в основании 26 здания, выполненного заодно целое с, по крайней мере, восемью ленточными фундаментными блоками 27 и 28, являющимися своеобразными "ловушками", а каждая из металлических плит 25 установлена на, по крайней мере, трех железобетонных столбах-упорах 29. Между каждыми ленточными фундаментными блоками 27 и 28 и каждой из железобетонных балок 23 устанавливаются песчаные подушки 30, а под резиновыми виброизоляторами 24 закреплены тензорезисторные датчики 31, контролирующие осадку виброизоляторов 24. Песчаные подушки 30 установлены в металлических разъемных обоймах.
Каждый из виброизоляторов 24 (фиг.5 и 6) выполнен шайбовым сетчатым и содержит основание 32 в виде пластины с крепежными отверстиями 33, сетчатый упругий элемент 38, нижней частью опирающийся на основание 32, и фиксируемый нижней шайбой 37, жестко соединенной с основанием, а верхней частью фиксируемый верхней нажимной шайбой 36, жестко соединенной с центрально расположенным кольцом 35, охватываемым соосно расположенным кольцом 34, жестко соединенным с основанием 32.
Возможен вариант, когда внутри центрально расположенных и осесимметричных колец нижнего 34 и верхнего 35, закрепленных соответственно на верхней нажимной шайбе и нижней шайбе, жестко соединенной с основанием таким образом, что нижнее кольцо 34 охватывает верхнее кольцо 35, дополнительно расположен демпфирующий элемент в виде винтовой цилиндрической пружины, витки которой покрыты слоем вибродемпфирующего материала, например полиуретана (на чертеже не показано).
Плотность сетчатой структуры упругого сетчатого элемента находится в оптимальном интервале величин: 1,2 г/см3 … 2,0 г/см3, причем материал проволоки упругих сетчатых элементов - сталь марки ЭИ-708, а диаметр ее находится в оптимальном интервале величин 0,09 мм … 0,15 мм.
Плотность сетчатой структуры внешних слоев упругого сетчатого элемента в 1,5 раза больше плотности сетчатой структуры внутренних слоев упругого сетчатого элемента.
Упругий сетчатый элемент 38 может быть выполнен комбинированным из сетчатого каркаса, залитого эластомером, например полиуретаном.
При колебаниях виброизолируемого объекта (на чертеже не показан), расположенного на верхней нажимной шайбе 36, упругий сетчатый элемент 38 воспринимает как вертикальные, так и горизонтальные нагрузки, ослабляя тем самым динамическое воздействие на виброизолируемый объект, т.е. обеспечивается пространственная виброзащита и защита от ударов.
Сейсмостойкая кирпичная стеновая панель 7 (фиг.8) выполнена из кирпичей 39 (фиг.7) с двумя отверстиями 40 по середине ширины и на одной четверти длины от торцов кирпича. В совмещенные отверстия 40 кирпичей 39 помещены демпфирующие (арматурные) стержни 41 (фиг.9), на торцах которых жестко закреплены плоские упоры 39, по толщине равные толщине растворного шва 42.
Каждый из демпфирующих (арматурных) стержней 41 представляет собой цилиндрический демпфирующий элемент, к концам которого жестко присоединены (например, посредством сварки) плоские жесткие упоры 43, а внутренняя полость заполнена слоем вибродемпфирующего материала, например песком, причем плотность вибродемпфирующего слоя должна быть меньше плотности внешней цилиндрической обечайки демпфирующего элемента. В случае, если плотности вибродемпфирующего слоя и внешней цилиндрической обечайки будут равны, то демпфирующий элемента 41 потеряет свойства гасить вибрации, что не допустимо.
Для повышения эффективности гашения ударных нагрузок и вибрации в каналах, предназначенных для размещения слоя строительного раствора 42, у торцов панели (и сбоку) размещают слои 45 вибродемпфирующего материала, конструктивно выполненные П-образного типа, и воспринимающие пространственную вибрацию, и выполненные, например, из измельченных покрышек пневматиков (изношенных автопокрышек) на связке (резиновый клей, жидкое стекло, полимерное связующее). После достижения запроектированной высоты панели для усадки слоев вибродемпфирующего материала 45 по времени, делают выдержку и приваривают последние жесткие упоры 43. Оставшийся промежуток (щель) заделывают обычным способом. Сейсмостойкое сооружение работает следующим образом.
В процессе возведения сейсмостойкого здания опалубка железобетонной монолитной стены опирается на песчаные подушки 30, заключенные в разборную металлическую обойму. После отвердения бетона и снятия опалубки между выступами "ловушками" 27 и 28 устанавливается виброизолятор 24 в сборе. После того как бетон в балке 23 наберет достаточную прочность, металлическая обойма размыкается и песок из "подушки" извлекается, а балка 23 опирается на виброизолятор 24. В дальнейшем, по мере воздвижения здания, виброизолятор 24 сжимается. Демонтаж и замена виброизолятора 24 производятся с помощью домкратов (на чертеже не показано).
При монтаже системы виброзащиты здания указанным способом необходимо соблюдать следующие положения:
- виброизоляторы 24 должны быть смонтированы уже в начальной стадии строительства, в связи с чем они должны быть заранее изготовлены и испытаны;
- должна быть обеспечена сохранность виброизоляторов 23 и тензорезисторных датчиков 31 от воздействия неблагоприятных природных факторов в период строительства;
- высота песчаной подушки 39 назначается по расчету исходя из осадки виброизоляторов 24 под нагрузкой и с течением времени;
- для регулировки зазора между железобетонной балкой 23 и "ловушкой" на последней устанавливаются, по крайней мере, две съемные металлические плиты толщиной по 1 см. Швы, отделяющие подпорную стенку от здания и здание от соседних зданий, устроены по типу антисейсмических швов (на чертеже не показано) и тщательно расчищены от строительного мусора. Предусмотрена система их защиты (на чертеже не показано) от засорения во время эксплуатации здания для исключения путей проникновения вибраций в здание.
Все магистрали, трубопроводы и т.п. коммуникации, проходящие через фундамент в здание или установленное на нем оборудование, устроены с компенсаторами либо отрезаны от фундамента скользящими швами (на чертеже не показано). Места установки вентиляционного, электрического и т.п. оборудования в цокольном этаже выбраны из условия доступа к виброизоляторам (на чертеже не показано), их монтажа и демонтажа.
Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения, и, как следствие, повышается коэффициент звукопоглощения.
При установке виброактивного оборудования на плиту 8 происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 8, а также за счет слоя вибродемпфирующего материала 11, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.
Сейсмостойкая кирпичная стеновая панель 7 монтируется и осуществляет виброизоляцию следующим образом. На фундамент (на чертеже не показано) между колоннами наносят слой строительного раствора 42. На строительный раствор устанавливают в виде полос плоские жесткие упоры 43 с приваренными к ним вертикально демпфирующими стержнями 41 длиной 1000 мм и диаметром, например, 16 мм, если диаметр отверстия 40 кирпича равен 20 мм, например на кирпиче размером 70×120×250 мм. Через каждые 8÷10 рядов уложенных на растворе кирпичей 39 привариваются жесткие упоры 43, а демпфирующие стержни удлиняются с применением сварки. В целях экономии арматуры в каналах средней зоны может заливаться раствор с вибродемпфирующей крошкой из измельченных покрышек автомобильных шин (изношенных) для образования более жестких зон.
Каждый демпфирующий стержень кирпичной стеновой панели (фиг.9) представляет собой коаксиально расположенные цилиндрические обечайки 41 и 47, между которыми коаксиально расположены трубчатые демпфирующие элементы 46 из вибродемпфирующего материала, к концам которых жестко присоединены плоские жесткие упоры 43, а внутренняя центральная полость 44 заполнена песком, при этом плотность слоев вибродемпфирующего материала меньше плотности коаксиально расположенных цилиндрических обечаек.
Сейсмостойкая кирпичная стеновая панель в динамике обладает следующими особенностями.
Более короткие демпфирующие стержни 41 арматуры не являются волноводами механических колебаний, так как распространению колебаний препятствуют, во-первых, узлы сварки с жесткими упорами 43, а во-вторых, слои 44 вибродемпфирующего материала, расположенные в самих демпфирующих стержнях 41. При подходе волн механических колебаний к панели извне их встречает вибродемпфирующий материал, в слоях 45, размещенных в каналах у торцов панели и гасит, препятствуя их проникновению к средней зоне. Между слоем строительного раствора 38 и поверхностями жестких упоров 43, а также кирпичами 39 происходит бесконечно убывающее отражение волн механических колебаний.
По сравнению с конструкцией прототипа предлагаемая сейсмостойкая панель обладает следующими преимуществами: расширен диапазон гашения колебаний механических воздействий за счет комплексных конструктивных особенностей: более коротких арматурных стержней 41 и наличия в их полостях вибродемпфирующего материала, а также слоев 45 вибродемпфирующего материала, конструктивно выполненных П-образного типа и экономно размещенных по периметру панели.
Кроме того, возможна стыковка панелей сваркой выпусков плоских жестких упоров 43.
Монтаж балок для полов осуществляется сваркой П-образных накладок на кирпич (на чертеже не показано), одновременно выполняющих функцию упоров 43, жестко соединенных с арматурным стержнем 41. Стыковка панелей осуществляется сваркой выпусков плоских жестких упоров 43 (на чертеже не показано).
Монтаж балок для полов, крепление трубопроводов, кабелей производится сваркой их креплений к П-образным поперечным накладкам на кирпич, одновременно выполняющим функцию жестких упоров 43, жестко соединенных с арматурным стержнем 41.
Сейсмостойкая панель может быть применена при строительстве кузовов транспортных средств путем использования кирпичей из легких и прочных материалов, дерева с пропиткой, пластмасс, синтетических смесей, микропористых материалов.
название | год | авторы | номер документа |
---|---|---|---|
СЕЙСМОСТОЙКОЕ СООРУЖЕНИЕ | 2017 |
|
RU2663979C1 |
СЕЙСМОСТОЙКОЕ СООРУЖЕНИЕ КОЧЕТОВА | 2015 |
|
RU2615183C1 |
ЗДАНИЕ СЕЙСМОСТОЙКОЕ КОЧЕТОВА С КИРПИЧНОЙ СТЕНОВОЙ ПАНЕЛЬЮ | 2015 |
|
RU2624057C2 |
ЗДАНИЕ СЕЙСМОСТОЙКОЕ С КИРПИЧНОЙ СТЕНОВОЙ ПАНЕЛЬЮ | 2015 |
|
RU2624842C2 |
ЗДАНИЕ СЕЙСМОСТОЙКОЕ С КИРПИЧНОЙ СТЕНОВОЙ ПАНЕЛЬЮ | 2017 |
|
RU2651964C1 |
СЕЙСМОСТОЙКОЕ ЗДАНИЕ КОЧЕТОВА | 2014 |
|
RU2641335C2 |
СЕЙСМОСТОЙКОЕ ЗДАНИЕ КОЧЕТОВА | 2014 |
|
RU2641334C2 |
СЕЙСМОСТОЙКОЕ ЗДАНИЕ КОЧЕТОВА | 2015 |
|
RU2624070C2 |
СЕЙСМОСТОЙКОЕ ЗДАНИЕ | 2015 |
|
RU2602550C1 |
СЕЙСМОСТОЙКОЕ ЗДАНИЕ | 2017 |
|
RU2651975C1 |
Изобретение относится к области строительства, а именно к реконструкции, восстановлению или возведению сейсмостойких зданий и сооружений. Технический результат заключается в обеспечении возможности усиления существующих зданий и сооружений или возведении усиленных зданий и сооружений с повышенной устойчивостью к воздействиям ветровых нагрузок и землетрясениям за счет размещения в них многослойных виброизолирующих опор, воспринимающих вертикальные нагрузки во время использования и активно воспринимающих горизонтальные нагрузки во время сейсмической активности без необратимых и критических разрушений или с минимальными деформациями, что повышает сейсмическую надежность и безопасность здания или сооружения. Это достигается тем, что в сейсмостойком здании, содержащем виброизолированный фундамент, горизонтальные и вертикальные несущие конструкции с системой виброизоляции, внутренние перегородки, кровлю здания, а также дверные и оконные проемы с усилением, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером. 9 ил.
Сейсмостойкое сооружение, содержащее виброизолированный фундамент, горизонтальные и вертикальные несущие конструкции с системой виброизоляции, внутренние перегородки, кровлю здания, а также дверные и оконные проемы с усилением, а в качестве вертикальных несущих конструкций сооружение содержит сейсмостойкие кирпичные стеновые панели, содержащие кирпичную кладку из кирпичей с отверстиями по средине ширины и на одной четверти длины от торцов кирпича, уложенных на растворе с совмещением отверстий в каналы, и арматурные стержни, пропущенные через каналы с жестким закреплением их на торцах посредством плоских упоров, по толщине равных толщине растворного шва, а в каналах у торцов панели размещены слои вибродемпфирующего материала П-образного типа, воспринимающие пространственную вибрацию, арматурные стержни выполнены демпфирующими, а каждый из них представляет собой цилиндрический демпфирующий элемент, к концам которого жестко присоединены плоские жесткие упоры, а внутренняя полость заполнена слоем вибродемпфирующего материала, например песком, при этом плотность вибродемпфирующего слоя меньше плотности внешней цилиндрической обечайки демпфирующего элемента, упругое основание пола выполнено из жесткого пористого вибропоглощающего материала, например эластомера или полиуретана, со степенью пористости, находящейся в диапазоне оптимальных величин 30÷45%, для защиты от вибраций вертикального направления виброизоляторы устанавливаются в ниши стен цокольного этажа на участки ленточного фундамента, а каждый комплект системы виброизоляции состоит из металлической плиты, четырех виброизоляторов, двух листов наждачной бумаги для исключения возможности скольжения элементов фундамента и двух опорных железобетонных блоков, при этом для защиты здания от вибраций горизонтального направления, распространяющихся по грунту, устроена система виброизоляции по вертикальным граням наружных стен цокольного этажа на уровне фундамента и перекрытия, при этом вокруг всего здания устроена подпорная стенка, контрфорсы которой соединяются с торцами несущих стен через виброизоляторы, которые устанавливаются в нишах контрфорсов, цокольный этаж здания выполнен в виде пространственной рамной конструкции из монолитного железобетона с включенными в раму перекрытием и перегородками, а также усиленными перемычками над дверными и иными проемами при неизменной жесткости перегородок, а фундамент выполнен в виде ленточной перекрестной конструкции высотой порядка 50 см, выступающей над фундаментной плитой-стяжкой, сейсмостойкая кирпичная стеновая панель содержит слои вибродемпфирующего материала, конструктивно выполненные П-образного типа, и воспринимающими пространственную вибрацию, выполнены из измельченных изношенных автопокрышек на связке в виде резинового клея, жидкого стекла или полимерного связующего, при этом в сейсмостойкой кирпичной стеновой панели через каждые 8÷10 рядов уложенных на растворе кирпичей привариваются жесткие упоры, а стержни выполнены демпфирующими, и каждый из них представляет собой коаксиально расположенные цилиндрические обечайки, между которыми коаксиально расположены трубчатые демпфирующие элементы из вибродемпфирующего материала, к концам которых жестко присоединены плоские жесткие упоры, а внутренняя центральная полость заполнена песком, при этом плотность слоев вибродемпфирующего материала меньше плотности коаксиально расположенных цилиндрических обечаек, при этом каждый из виброизоляторов выполнен в виде шайбового сетчатого виброизолятора, который содержит основание, упругий сетчатый элемент и шайбы, взаимодействующие с втулками, при этом основание выполнено в виде пластины с крепежными отверстиями, сетчатый упругий элемент своей нижней частью опирается на основание и фиксируется нижней шайбой, жестко соединенной с основанием, а верхней частью фиксируется верхней нажимной шайбой, жестко соединенной с центрально расположенным кольцом, охватываемым соосно расположенным кольцом, жестко соединенным с основанием, а плотность сетчатой структуры упругого сетчатого элемента находится в оптимальном интервале величин 1,2÷2,0 г/см3, причем материал проволоки упругих сетчатых элементов - сталь марки ЭИ-708, а диаметр ее находится в оптимальном интервале величин 0,09 мм÷0,15 мм, при этом плотность сетчатой структуры внешних слоев упругого сетчатого элемента в 1,5 раза больше плотности сетчатой структуры внутренних слоев упругого сетчатого элемента, а упругий сетчатый элемент выполнен комбинированным из сетчатого каркаса, залитого эластомером, например полиуретаном, отличающееся тем, что внутри центрально расположенных и осесимметричных колец, закрепленных соответственно на верхней нажимной шайбе и нижней шайбе, жестко соединенной с основанием таким образом, что нижнее кольцо охватывает верхнее кольцо, дополнительно расположен демпфирующий элемент в виде винтовой цилиндрической пружины, витки которой покрыты слоем вибродемпфирующего материала, например полиуретана.
Способ получения калиевой соли бензилпенициллина | 1959 |
|
SU131037A1 |
Приспособление к наружно-лакировочным и печатным машинам для автоматического съема туб и надевания их на носители цепи сушильного транспортера | 1959 |
|
SU123433A1 |
Амортизатор | 1975 |
|
SU789666A1 |
Виброизолятор | 1990 |
|
SU1763752A1 |
УСТРОЙСТВО для ИГРЫ в ВОПРОСЫ и ОТВЕТЫ | 0 |
|
SU183652A1 |
Способ определения оптимального усилия прессования изделий из термореактивных пресс-материалов | 1984 |
|
SU1158899A2 |
Авторы
Даты
2018-06-05—Публикация
2014-04-07—Подача