СПОСОБ ФИЛЬТРАЦИИ КАПЕЛЬНОЙ ФАЗЫ ПРИ ОСАЖДЕНИИ ИЗ ПЛАЗМЫ ВАКУУМНО-ДУГОВОГО РАЗРЯДА Российский патент 2018 года по МПК C23C14/24 H01J3/40 

Описание патента на изобретение RU2657273C1

Изобретение относится к области нанесения покрытий из плазмы вакуумно-дугового разряда и может быть использовано для получения фильтрованной плазмы.

Известен способ получения покрытий в вакууме, по которому поджег разряда в области генерирования осуществляют расфокусированным лазерным излучением, длительность τг которого определяется из условия τг>>τл, и совмещением диаграммы направленности течения лазерной плазмы с областью формирования канала пробоя межэлектродного промежутка с последующим наложением на области генерирования, транспортирования и конденсации магнитных полей и распределением магнитных потоков в областях генерирования, транспортирования и конденсации таким образом, что на анодную область разряда частично замыкают магнитный поток, при котором формируется положительный скачок потенциала оптимальной величины, при этом магнитный поток через профилированную поверхность, ограничивающую радиально область транспортирования, равен нулю, а магнитный поток в области конденсации равен продольному магнитному потоку в области транспортирования, а также тем, что ионную компоненту плазмы направляют на поверхность конденсации и отделяют от капельной фазы на этапе транспортирования в области слоя Ленгмюра (патент РФ №2176681, МПК С23С 14/00, 10.12.2001, Бюл. №34).

Недостатком данного способа является длительность процесса нанесения покрытия, обусловленная уменьшением скорости роста покрытий, за счет отделения капельной фазы.

Известен способ, в котором вакуумно-дуговой испаритель содержит анод, электромагнитную катушку, охватывающую корпус в виде отрезка трубы, цилиндрического катода, ферромагнитного кольца, охватывающего катод вблизи его торцевой испаряемой поверхности, ферромагнитную втулку, которая охватывает держатель катода. Для увеличения эффективности работы испарителя он снабжен дополнительными кольцевыми ферромагнитными элементами. Увеличение напряженности магнитного поля на рабочем торце катода обеспечивает стабильность дугового разряда, рост выходного ионного тока, а также уменьшение капельной фазы в продуктах эрозии катода за счет перемещения катодных пятен дуги (патент РФ №2536126, МПК С23С 14/35, 20.12.2014, Бюл. №35).

Недостатком данного способа является использование дополнительных ферромагнитных элементов, которые приводят к удорожанию и усложнению реализации способа.

Известен способ транспортировки с фильтрованием от макрочастиц вакуумно-дуговой катодной плазмы. Плазменные потоки транспортируют в плазмооптической системе от электродугового испарителя к выходу источника плазмы под действием транспортирующего магнитного поля, создаваемого с использованием электромагнитных катушек. В плазмоводе на плазменный поток действуют дополнительным магнитным полем, генерируемым с помощью дополнительной электромагнитной катушки, охватывающей плазмовод. При использовании способа значительно уменьшаются потери плазмы, очищенной от макрочастиц (патент РФ №2507305 МПК С23С 14/35, 20.02.2014, Бюл. №5).

Недостатком способа является уменьшение энергии ионов за счет изменения направления потока плазмы.

Известен способ, реализованный источником фильтрованной плазмы вакуумной дуги. Фильтрование плазмы осуществляют в фильтре с изогнутым под прямым углом плазмоводом, снабженным, по крайней мере, тремя дополнительными магнитными катушками, размещенными в области изгиба плазмовода. Эти магнитные катушки и другие элементы фильтра, включая систему поперечных ребер и магнитную ловушку остроугольной геометрии в плазмоведущем канале, обеспечивают необходимую эффективность прохождения плазмы через фильтр, снижение потерь плазмы и пониженный выход нежелательных частиц из плазменного фильтра (патент РФ №2369664 МПК, С23С 14/35, 10.10.2009, Бюл. №28).

Недостатком способа является снижение плазменного потока за счет прохождения плазмы через магнитную ловушку.

Известен способ для очистки плазмы дугового испарителя от микрочастиц, реализуемый устройством, содержащий жалюзийную систему электродов, которые наклоняют к оси испарителя так, что электроды полностью перекрывают аппертуру испарителя. Электроды электрически соединяют между собой последовательно и встречно и подключают к источнику тока. Между жалюзной системой и анодом испарителя включают источник напряжения смещения положительным выводом к жалюзной системе, что повышает прозрачность жалюзной системы (патент РФ №2108636, МПК С23С 14/48, 10.04.1998).

Недостатком способа является снижение коэффициента прозрачности фильтра для плазменного потока из-за изменения направления напряженности магнитного поля в соседних зазорах жалюзийной системы коаксиальных электродов. В целом снижается эффективность прохождения плазмы через плазменный фильтр жалюзийного типа.

Известен способ фильтрации капельной фазы, реализуемой устройством, которое представляет собой четверть тороидального канала, где с помощью принципов плазменной (ионной) оптики плазменный поток разворачивают под углом 90° к источнику плазмы, в результате чего нейтральные или слабоионизированные частицы и макрочастицы оседают на его стенках, не достигая обрабатываемой детали (Максимов Ю.В. Верещака А.С., Верещака А.А., Кудров А.С., Лыткин Д.Н., Шегай Д.Л., Булечева А.И../ Разработка и исследование многослойно-композиционных покрытий с нанодисперсной структурой осаждаемых на режущие инструменты и использовании ассистируемых катодно-вакуумно-дуговых процессов // (Известия МГТУ "МАМИ" №1(15), 2013, т. 2. С. 73-82).

Недостатком способа является уменьшение плотности плазменного потока и скорости роста покрытия за счет сепарации с помощью магнитных полей.

Известен способ для осаждения металлических пленок, по которому в рабочей вакуумной камере устанавливают эмиссионную сетку, полый катод, ограниченный эмиссионной сеткой, анод внутри полого катода, источник питания разряда, который положительным полюсом соединяют с анодом, а отрицательным полюсом - с полым катодом, источник ускоряющего напряжения, положительным полюсом соединенный с анодом, а отрицательным полюсом - с эмиссионной сеткой, так же устанавливают мишень в форме экрана, выполненного из фольги осаждаемого металла и расположенного на внутренней поверхности полого катода, эмиссионную сетку из осаждаемого металла. Полый держатель подложек устанавливают в рабочей вакуумной камере напротив эмиссионной сетки, а его полость оснащают экраном из фольги осаждаемого металла, а также источник напряжения смещения, который положительным полюсом соединяют с рабочей вакуумной камерой, а отрицательным полюсом - с эмиссионной сеткой (патент РФ №2510984, МПК H01J 27/04, 10.04.2014, Бюл. №10).

Недостатком данного способа является уменьшение плотности плазменного потока за счет перекрывания плазменного потока на выходе из источника металлической плазмы.

Наиболее близким к заявляемому изобретению по совокупности существенных признаков является способ, реализуемый устройством для очистки плазменного потока дуговых испарителей от микрокапельной фракции. Устройство содержит жалюзийную систему, выполненную в виде набора электродов, перекрывающих апертуру испарителя. Электроды электрически соединены между собой последовательно и встречно и подключены к источнику тока и к положительному выводу источника напряжения, вторым выводом подключенного к аноду дугового испарителя. Каждый электрод выполнен из двух прилегающих друг к другу элементов, которые подключены к источнику тока таким образом, чтобы по ним протекал ток в противоположных направлениях (патент РФ №2585243, МПК Н01J 3/40, 27.05.2016, Бюл. №15). Данный способ взят за прототип.

Недостатком способа является то, что жалюзийная система электродов полностью перекрывает испаритель, тем самым уменьшая поток плазмы, проходящий через жалюзи.

Задача изобретения заключается в повышении качества обрабатываемой поверхности.

Технический результат заключается в повышении качества, увеличении адгезии, уменьшении пористости и улучшении физико-механических свойств: микротвердости и шероховатости наносимого покрытия, за счет уменьшения капельной фазы и увеличения плотности плазменного потока вблизи поверхности обрабатываемой детали.

Поставленная задача и технический результат достигаются тем, что способ фильтрации капельной фазы из плазмы вакуумно-дугового разряда при осаждении многослойного покрытия системы Ti-Al на поверхность детали характеризуется тем, что перед деталью на расстоянии 7 мм от нее устанавливают технологическую сетку с квадратными ячейками с оптической прозрачностью 65% из прутка нержавеющей стали, электрически соединяют с упомянутой деталью и подают на упомянутою сетку отрицательный потенциал.

Существо изобретения поясняется чертежом.

На фиг. 1 изображена вакуумная установка.

На фиг. 2 изображена схема реализации способа фильтрации капельной фазы при осаждении многослойного покрытия системы Ti-Al из плазмы вакуумно-дугового разряда.

Пример конкретной реализации способа

Устройство для реализации способа содержит: вакуумную камеру 1, электродуговые испарители (катоды) 2, обрабатываемую деталь 3, технологическую сетку 4 (фиг. 1), ионный поток 5, плазму полого катода 6, двойной электрический слой 7, капельную фазу 8, ионы 9 (фиг. 2).

В вакуумной камере 1 устанавливают обрабатываемую деталь 3. На расстоянии h (h=7 мм) от поверхности детали устанавливают технологическую сетку 4 с оптической прозрачностью 65% из нержавеющей стали 12х18нт10. Технологическая сетка 4 находится под таким же отрицательный потенциалом, как и обрабатываемая деталь. В вакуумной камере 1 создают рабочее давление Р=10-1-10-2 Па. Ток дуги I=60-120 А. Далее происходит процесс осаждения многослойного композиционного покрытия системы Ti-Al в течение 60 мин.

Капельная фаза 8, проходя через технологическую сетку 4, попадает в плазму более плотного состава, и за счет столкновения с другими частицами происходит расщепление капельной фазы 8 на мелкие частицы и ионы 9, то есть осуществляют фильтрацию капельной фазы.

Итак, заявляемое изобретение позволяет фильтровать капельную фазу, за счет этого увеличить адгезию, уменьшить пористость, увеличить микротвердость, уменьшить шероховатость наносимого покрытия, получаемую при осаждении из плазмы вакуумно-дугового разряда.

Похожие патенты RU2657273C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ПЛАЗМЫ ДУГОВОГО ИСПАРИТЕЛЯ ОТ МИКРОЧАСТИЦ 1996
  • Рябчиков А.И.
RU2108636C1
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ПЛАЗМЫ ДУГОВОГО ИСПАРИТЕЛЯ ОТ МИКРОЧАСТИЦ (ЕГО ВАРИАНТЫ) 1996
  • Рябчиков А.И.
  • Степанов И.Б.
RU2097868C1
СПОСОБ ПОВЫШЕНИЯ СТОЙКОСТИ МЕТАЛЛОРЕЖУЩЕГО ИНСТРУМЕНТА 2018
  • Рамазанов Камиль Нуруллаевич
  • Варданян Эдуард Леонидович
  • Назаров Алмаз Юнирович
  • Брюханов Евгений Александрович
  • Насыров Вадим Файзерахманович
  • Галимова Ирина Рифхатовна
  • Хуснимарданов Рушан Наилевич
  • Уткина Екатерина Алексеевна
RU2697749C1
Газоразрядное распылительное устройство на основе планарного магнетрона с ионным источником 2020
  • Семенов Александр Петрович
  • Семенова Ирина Александровна
  • Цыренов Дмитрий Бадма-Доржиевич
  • Николаев Эрдэм Олегович
RU2752334C1
СПОСОБ ИМПУЛЬСНО-ПЕРИОДИЧЕСКОЙ ИОННОЙ И ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Рябчиков А.И.
  • Дектярев С.В.
RU2113538C1
СПОСОБ ТРАНСПОРТИРОВКИ С ФИЛЬТРОВАНИЕМ ОТ МАКРОЧАСТИЦ ВАКУУМНО-ДУГОВОЙ КАТОДНОЙ ПЛАЗМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Васильев Владимир Васильевич
  • Стрельницкий Владимир Евгеньевич
RU2507305C2
Способ нанесения антиэмиссионного покрытия из пиролитического углерода на сеточные электроды мощных электровакуумных приборов 2020
  • Кузнецов Вячеслав Геннадьевич
  • Кострин Дмитрий Константинович
  • Логвиненко Андрей Сергеевич
  • Сабуров Игорь Викторович
RU2759822C1
УСТАНОВКА ДЛЯ КОМБИНИРОВАННОЙ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ 2009
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Дыбленко Михаил Юрьевич
  • Мингажев Аскар Джамилевич
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Рябчиков Александр Ильич
  • Степанов Игорь Борисович
RU2425173C2
СПОСОБ НАНЕСЕНИЯ ИОННО-ПЛАЗМЕННЫХ ПОКРЫТИЙ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Мингажев Аскар Джамилевич
  • Дыбленко Юрий Михайлович
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Дыбленко Михаил Юрьевич
  • Мингажева Алиса Аскаровна
RU2380456C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МНОГОСЛОЙНО-КОМПОЗИЦИОННЫХ НАНОСТРУКТУРИРОВАННЫХ ПОКРЫТИЙ И МАТЕРИАЛОВ 2010
  • Башков Валерий Михайлович
  • Беляева Анна Олеговна
  • Додонов Александр Игоревич
RU2463382C2

Иллюстрации к изобретению RU 2 657 273 C1

Реферат патента 2018 года СПОСОБ ФИЛЬТРАЦИИ КАПЕЛЬНОЙ ФАЗЫ ПРИ ОСАЖДЕНИИ ИЗ ПЛАЗМЫ ВАКУУМНО-ДУГОВОГО РАЗРЯДА

Изобретение относится к области нанесения покрытий из плазмы вакуумно-дугового разряда и может быть использовано для получения фильтрованной плазмы. Способ фильтрации капельной фазы из плазмы вакуумно-дугового разряда при осаждении многослойного покрытия системы Ti-Al на поверхность детали характеризуется тем, что перед деталью на расстоянии 7 мм от нее устанавливают технологическую сетку с квадратными ячейками с оптической прозрачностью 65% из прутка нержавеющей стали, электрически соединяют с упомянутой деталью и подают на упомянутую сетку отрицательный потенциал. Обеспечивается повышение качества и улучшение адгезии, уменьшение пористости, улучшение физико-механических свойств, а именно микротвердости и шероховатости наносимого покрытия, за счет уменьшения капельной фазы и увеличения плотности плазменного потока на выходе из фильтра. 2 ил., 1 пр.

Формула изобретения RU 2 657 273 C1

Способ фильтрации капельной фазы из плазмы вакуумно-дугового разряда при осаждении многослойного покрытия системы Ti-Al на поверхность детали, характеризующийся тем, что перед деталью на расстоянии 7 мм от нее устанавливают технологическую сетку с квадратными ячейками с оптической прозрачностью 65% из прутка нержавеющей стали, электрически соединяют с упомянутой деталью и подают на упомянутою сетку отрицательный потенциал.

Документы, цитированные в отчете о поиске Патент 2018 года RU2657273C1

УСТРОЙСТВО ДЛЯ ОЧИСТКИ ПЛАЗМЕННОГО ПОТОКА ДУГОВЫХ ИСПАРИТЕЛЕЙ ОТ МИКРОКАПЕЛЬНОЙ ФРАКЦИИ 2015
  • Рябчиков Александр Ильич
  • Сивин Денис Олегович
RU2585243C1
ИСТОЧНИК ФИЛЬТРОВАННОЙ ПЛАЗМЫ ВАКУУМНОЙ ДУГИ 2004
  • Аксенов Иван Иванович
  • Стрельницкий Владимир Евгеньевич
  • Васильев Владимир Васильевич
  • Воеводин Андрей А.
  • Джоунс Джон Г.
  • Забински Джеффри С.
RU2369664C2
СПОСОБ ТРАНСПОРТИРОВКИ С ФИЛЬТРОВАНИЕМ ОТ МАКРОЧАСТИЦ ВАКУУМНО-ДУГОВОЙ КАТОДНОЙ ПЛАЗМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Васильев Владимир Васильевич
  • Стрельницкий Владимир Евгеньевич
RU2507305C2
0
SU92240A1
US 7252745 B2, 07.08.2007.

RU 2 657 273 C1

Авторы

Будилов Владимир Васильевич

Шехтман Семен Романович

Варданян Эдуард Леонидович

Назаров Алмаз Юнирович

Даты

2018-06-09Публикация

2017-05-22Подача