Изобретение относится к области промышленной аэродинамики и может быть использовано для проведения газодинамических испытаний авиационной и ракетной техники.
Известна установка для газодинамических испытаний, содержащая испытательную камеру с гиперзвуковым соплом, источник сжатого газа с магистралью высокого давления, систему регулирования подачи сжатого газа с регулируемыми клапанами, датчиками давления, датчиком температуры и регулятором расхода газа, установленным в магистрали высокого давления, и подогреватель газа, подключенный входом к магистрали высокого давления, выходом - к входу гиперзвукового сопла испытательной камеры (патент РФ №2482457).
В известной установке необходимый расход газа через гиперзвуковое сопло поддерживается с помощью крионасосов, обеспечивающих соответствующий уровень давления в вакуумной камере.
К недостаткам этой установки следует отнести наличие замкнутой системы подачи газа в испытательную камеру, что не позволяет проводить испытания с различными по составу газами в зависимости от используемого топлива.
Известна установка для газодинамических испытаний, содержащая испытательную камеру с аэродинамическим соплом, источник сжатого воздуха с магистралью высокого давления, систему регулирования подачи сжатого воздуха с регулируемыми клапанами, датчиками давления, датчиком температуры и регулятором расхода воздуха, установленным в магистрали высокого давления, и газовый генератор с системой подачи топлива, топливными форсунками и системой зажигания, подключенный входом к магистрали высокого давления, выходом - к входу аэродинамического сопла испытательной камеры, а форсунками - к системе подачи топлива (патент РФ №2421702). В известной установке для генерирования газа используется жидкое углеводородное топливо, предпочтительно керосин, что позволяет подавать в испытательную камеру газ с температурой 1000…1100°С.
Однако известная установка не может обеспечить имитацию натурных условий при стендовых испытаниях работы образцов авиационной и космической техники в воздушном потоке с заданными баротермическими и скоростными параметрами, т.к. газ, подаваемый в аэродинамическое сопло испытательной камеры, будет характеризоваться пониженным содержанием кислорода в его составе и неравномерным распределением температурного поля в потоке.
Наиболее близким аналогом изобретения является установка для газодинамических испытаний, содержащая испытательную камеру с аэродинамическим соплом, источник сжатого воздуха с магистралью высокого давления, систему регулирования подачи сжатого воздуха с регулируемыми клапанами, датчиками давления, датчиком температуры и регулятором расхода воздуха, установленным в магистрали высокого давления, газовый генератор со смесительным ресивером, топливными форсунками и системой зажигания, подключенный входом к магистрали высокого давления, а выходом - к входу аэродинамического сопла испытательной камеры, систему подачи топлива, подключенную к топливным форсунам и имеющую регулятор расхода топлива, и систему подачи кислорода, подключенную к смесительному ресиверу и имеющую регулятор расхода кислорода, причем регулятор расхода воздуха выполнен в виде редукционного клапана с полостью управления и расходного критического сопла, установленного в магистрали высокого давления между редукционным клапаном и газовым генератором, а система регулирования подачи сжатого воздуха имеет редуктор, управляемый клапан и ресивер, подключенный к полости управления редукционного клапана непосредственно (патент РФ №149566).
Подача кислорода в качестве окислителя для топлива в смесительную камеру газового генератора позволяет получить на выходе газового генератора высокоэнтальпийный рабочий газ с содержанием кислорода, соответствующим его содержанию в атмосферном воздухе, что является необходимым условием моделирования реальных параметров набегающего потока при проведении стендовых испытаний. При этом процесс моделирования реальных параметров набегающего потока не возможен без соблюдения точного соотношения величин расхода всех трех компонентов, подаваемых в генератор газа: топлива, кислорода и сжатого воздуха.
В известной установке управление подачей указанных компонентов в газовый генератор осуществляется давлением воздуха в основной магистрали. При работе установки с максимальной подачей воздуха в газовый генератор, а также на переходных режимах работы, когда резко меняется расход подаваемого в газовый генератор воздуха, давление воздуха в основной магистрали не стабильно. Резкие кратковременные колебания давления в системе управления подачей топлива и кислорода вносят искажения в процесс моделирования реальных параметров набегающего потока.
Кроме того, при проведении испытаний с взрывоопасными видами топлива, например с водородом, использование воздуха в системе управления подачи топлива не отвечает требованиям безопасности.
Технической проблемой, решаемой изобретением, является обеспечение моделирования заданных натурных параметров набегающего потока в испытательной камере с учетом требований безопасности при проведении газодинамических испытаний.
Техническим результатом изобретения является повышение точности регулирования всех компонентов, подаваемых в генератор газа, и обеспечение взрывобезопасности работы устройства.
Этот технический результат достигается тем, что установка для газодинамических испытаний содержит испытательную камеру с аэродинамическим соплом, источник сжатого воздуха с магистралью высокого давления, систему регулирования подачи сжатого воздуха с регулируемыми клапанами, датчиками давления, датчиком температуры и регулятором расхода воздуха, установленным в магистрали высокого давления, газовый генератор со смесительным ресивером, топливными форсунками и системой зажигания, подключенный входом к магистрали высокого давления, а выходом - к входу аэродинамического сопла испытательной камеры, систему подачи топлива, подключенную к топливным форсункам и имеющую регулятор расхода топлива, и систему подачи кислорода, подключенную к смесительному ресиверу и имеющую регулятор расхода кислорода, причем регулятор расхода воздуха выполнен в виде редукционного клапана с полостью управления и расходного критического сопла, установленного в магистрали высокого давления между редукционным клапаном и газовым генератором, а система регулирования подачи сжатого воздуха имеет пневморедуктор, регулируемый клапан и ресивер, подключенный к полости управления редукционного клапана непосредственно и связанный с атмосферой через управляемые клапаны. Причем установка снабжена источником постоянного давления нейтрального газа, регуляторы расхода топлива и кислорода выполнены в виде управляемых редукционных клапанов, полость управления каждого из которых подключена к источнику постоянного давления нейтрального газа через дополнительные пневморедуктор, регулируемый клапан и ресивер, связанный с атмосферой через дополнительные управляемые клапаны.
Полость управления редукционного клапана системы регулирования подачи сжатого воздуха также может быть подключена через пневморедуктор, регулируемый клапан и ресивер к источнику постоянного давления нейтрального газа.
Существенность отличительных признаков установки подтверждается тем, что только совокупность всех конструктивных признаков, описывающая изобретение, позволяет обеспечить достижение технического результата изобретения - повышение точности регулирования всех компонентов, подаваемых в генератор газа, с учетом требований безопасности при проведении газодинамических испытаний.
Существо изобретения поясняется чертежом, где представлена общая схема установки.
Установка для газодинамических испытаний содержит испытательную камеру 1 с аэродинамическим соплом 2, источник сжатого воздуха 3 с магистралью высокого давления 4, систему регулирования подачи сжатого воздуха 5 с регулятором расхода воздуха 6, установленным в магистрали высокого давления 4, и газовый генератор 7, подключенный входом к магистрали высокого давления 4, а выходом - к входу аэродинамического сопла 2 испытательной камеры 1.
Регулятор расхода воздуха 6 выполнен в виде редукционного клапана 8 с полостью управления 9 и расходного критического сопла 10, установленного в магистрали высокого давления 4 между редукционным клапаном 8 и газовым генератором 7.
Газовый генератор 7 выполнен с топливными форсунками 11, подключенными к системе подачи топлива 12, системой зажигания 13 и смесительным ресивером 14, который подключен к магистрали высокого давления 4 и системе подачи кислорода 15.
В системе регулирования подачи сжатого воздуха 5 установлен ресивер 16, подключенный к полости управления 9 редукционного клапана 8 непосредственно, а к источнику постоянного давления нейтрального газа 17 - через пневморедуктор 18 и регулируемый клапан 19. Параллельно с регулируемым клапаном 19 может быть установлен регулируемый клапан 20 с иной расходной характеристикой.
В системе регулирования подачи сжатого воздуха 5 имеются датчик давления 21 и датчик температуры 22, установленные на входе расходного критического сопла 10, и датчик давления 23, установленный на выходе расходного критического сопла 10. Ресивер 16 системы регулирования подачи сжатого воздуха 5 сообщен с атмосферой двумя управляемыми клапанами 24 и 25, выполненными с разными расходными характеристиками.
Система подачи топлива 12 имеет регулятор расхода топлива, выполненный в виде редукционного клапана 26, полость управления 27 которого подключена к источнику постоянного давления нейтрального газа 17 через дополнительные пневморедуктор 28, регулируемый клапан 29 и ресивер 30, связанный с атмосферой через дополнительные управляемые клапаны 31 и 32.
Система подачи кислорода 15 выполнена аналогично системе подачи топлива 12 и имеет регулятор расхода топлива, выполненный в виде редукционного клапана 33, полость управления 34 которого подключена к источнику постоянного давления нейтрального газа 17 через дополнительные пневморедуктор 35, регулируемый клапан 36 и ресивер 37, связанный с атмосферой через дополнительные управляемые клапаны 38 и 39.
Реализация общей программы испытаний осуществляется с помощью блока управления 40, подключенного к исполнительным механизмам всех исполнительных элементов устройства, а также к датчикам давления 21 и 23 и датчику температуры 22. Управление подачей в газовый генератор 7 топлива и кислорода осуществляется блоком управления 41, связанным с блоком управления 40. Для запуска устройства предусмотрены последовательно срабатывающие пусковые клапаны 42, 43 и 44.
Установка работает следующим образом.
В начальный момент редукционный клапан 8 системы регулирования подачи сжатого воздуха 5, редукционный клапан 33 системы подачи кислорода 15 и редукционный клапан 26 системы подачи топлива 12 настраиваются на требуемые величины давления. Также предварительно настраиваются на требуемые величины давления пневморедуктор 18 системы регулирования подачи сжатого воздуха 5, пневморедуктор 28 системы подачи топлива 12 и пневморедуктор 35 системы подачи кислорода 15, связанные с источником постоянного давления нейтрального газа 17.
После открытия клапана 42 начинается подача воздуха. Через редуктор 8 воздух поступает в расходное критическое сопло 10, в котором выполняется измерение давления Р датчиками 21 и 23 и измерение полной температуры Т0 датчиком температуры 22. По результатам измерения давления и полной температуры автоматически контролируется расход воздуха.
Из расходного критического сопла 10 воздух через клапан 42 подается в смесительный ресивер 14 газового генератора 7, который соединен с системой подачи кислорода 15. Подача кислорода включается через несколько секунд после начала подачи воздуха открытием пускового клапана 43. Контроль расхода кислорода выполняется в автоматическом режиме с помощью измерительного участка 45, связанного с блоком управления 41.
Через небольшой промежуток времени после включения подачи кислорода открывается клапан 44 и начинается подача топлива. Расход подачи топлива контролируется с помощью измерительного участка 46, связанного с блоком управления 41.
В ресивере 14 кислород смешивается с воздухом. Затем кислородо-воздушная смесь подается к топливным форсункам 11, через которые происходит подача топлива в огневую камеру газового генератора 7. Полученная смесь воздуха, кислорода и топлива содержит дозированное количество каждого из компонентов. Это необходимо для правильного воспроизведения параметров потока, соответствующих полетному режиму летательного аппарата. Полученная смесь сгорает в огневой камере газового генератора 7, причем устойчивое горение поддерживается системой зажигания 13. Поток нагретой в газовом генераторе 7 рабочей среды подается через аэродинамическое сопло 2 в испытательную камеру 1.
Расход подаваемого воздуха регулируется электронным блоком управления 40. В том случае, если в процессе проведения испытания расход воздуха уменьшается в сравнении с заданным, то из блока управления 40 поступает команда на открытие клапана 19 и в полость управления 9 редукционного клапана 8 поступает через пневморедуктор 18 управляющий газ с необходимым давлением, в результате чего расход воздуха через редуктор 8 увеличивается до требуемой величины.
Если расход оказался завышенным, по команде блока управления 40 открывается один из клапанов 24 или 25, при этом избыток нейтрального газа сбрасывается в атмосферу, а расход воздуха через редуктор 8 уменьшается до требуемой величины. Для того чтобы осуществить плавную подачу газа в редуктор в нужном диапазоне, в системе регулирования расхода предусмотрен ресивер 16.
Регулирование расхода кислорода выполняется также в автоматическом режиме аналогично регулированию расхода воздуха. Расход подаваемого кислорода контролируются электронным блоком управления 41, который связан с блоком управления 40, задающим программу испытания. В том случае, если в процессе проведения испытания расход кислорода необходимо увеличить, из блока управления 41 поступает команда на открытие регулируемого клапана 36 ив полость управления 34 редукционного клапана 33 поступает через пневморедуктор 35 и ресивер 37 нейтральный газ с необходимым давлением, в результате чего, расход воздуха через редукционный клапан 33 увеличивается до требуемой величины.
Для уменьшения расхода кислорода по команде блока управления 41 открывается один из управляемых клапанов 38 или 39, давление нейтрального газа в полости управления 34 редукционного клапана 33 уменьшается и соответственно снижается расход кислорода через редукционный клапан 33.
В процессе регулирования расхода топлива по команде блока управления 41 для увеличения подачи топлива открывается регулируемый клапан 29 и нейтральный газ от источника постоянного давления 17 подается через пневморедуктор 28 и ресивер 30 в полость управления 27 редукционного клапана 26. Снижение подачи топлива осуществляется открытием одного из управляемых клапанов 31 или 32, при этом полость управления 27 редукционного клапана 26 сообщается с атмосферой.
Все вещества подаются в заранее рассчитанных количествах, так чтобы полная температура нагретой рабочей среды и содержание кислорода в ней соответствовали полетным условиям. Благодаря автоматической регулировке обеспечивается бесперебойная подача газов в нужной последовательности и требуемом количестве для проведения испытаний.
После проведения испытаний отключение подачи используемых веществ происходит в следующем порядке: сначала отключается подача топлива, затем - подача кислорода, после чего отключается подача воздуха.
Описанная установка позволяет проводить газодинамические испытания воздушно-реактивных двигателей и аппаратов с работающими двигателями в широком полетном диапазоне, с максимальным приближением к натурным условиям, при этом обеспечивается моделирование заданных натурных параметров набегающего потока в испытательной камере с учетом требований безопасности при проведении газодинамических испытаний.
Кроме того, вышеописанная установка позволяет быстро переходить с одного экспериментального режима на другой, и таким образом обеспечивается возможность исследования переходных рабочих процессов для различных типов двигателей.
название | год | авторы | номер документа |
---|---|---|---|
Установка для газодинамических испытаний | 2020 |
|
RU2767554C2 |
УСТАНОВКА ДЛЯ ГАЗОДИНАМИЧЕСКИХ ИСПЫТАНИЙ | 2020 |
|
RU2758412C1 |
Установка для аэродинамических испытаний | 2021 |
|
RU2779457C1 |
СПОСОБ ДИСПЕРГИРОВАНИЯ ЖИДКОСТИ В СТРУЕ ДИСПЕРСИОННОЙ ВОЗДУШНОЙ СРЕДЫ В АЭРОЗОЛЬ И МОБИЛЬНЫЙ ГЕНЕРАТОР АЭРОЗОЛЯ РЕГУЛИРУЕМОЙ МНОГОМЕРНЫМ ВОЗДЕЙСТВИЕМ ДИСПЕРСНОСТИ, СМЕСИТЕЛЬ, КЛАПАН СОГЛАСОВАНИЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА (ВАРИАНТЫ) | 2011 |
|
RU2489201C2 |
Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин | 2015 |
|
RU2609819C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПРИМИРОВАННОГО ИНЕРТНОГО ГАЗА С РЕГУЛИРУЕМЫМИ ДАВЛЕНИЕМ И РАСХОДОМ И УСТРОЙСТВО ДЛЯ ЕГО ВОПЛОЩЕНИЯ | 2004 |
|
RU2276619C1 |
ИМПУЛЬСНАЯ АЭРОДИНАМИЧЕСКАЯ ТРУБА | 2010 |
|
RU2439523C1 |
Установка для высотных испытаний двигателей летательных аппаратов | 2022 |
|
RU2797789C1 |
ЭЛЕКТРОГАЗОДИНАМИЧЕСКИЙ СО-ЛАЗЕР | 1993 |
|
RU2065240C1 |
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ЗАМКНУТОГО ЦИКЛА И СПОСОБ УПРАВЛЕНИЯ ЕЕ РАБОТОЙ | 1999 |
|
RU2163976C2 |
Изобретение относится к области промышленной аэродинамики и может быть использовано для проведения газодинамических испытаний авиационной и ракетной техники. Устройство содержит испытательную камеру с аэродинамическим соплом, источник сжатого воздуха с магистралью высокого давления, систему регулирования подачи сжатого воздуха с регулируемыми клапанами, датчиками давления, датчиком температуры и регулятором расхода воздуха, установленным в магистрали высокого давления, газовый генератор со смесительным ресивером, топливными форсунками и системой зажигания, подключенный входом к магистрали высокого давления, а выходом - к входу аэродинамического сопла испытательной камеры, систему подачи топлива, подключенную к топливным форсункам и имеющую регулятор расхода топлива, и систему подачи кислорода, подключенную к смесительному ресиверу и имеющую регулятор расхода кислорода. Также оно снабжено источником постоянного давления нейтрального газа, регуляторы расхода топлива и кислорода выполнены в виде управляемых редукционных клапанов, полость управления каждого из которых подключена к источнику постоянного давления нейтрального газа через дополнительные пневморедуктор, регулируемый клапан и ресивер, связанный с атмосферой через дополнительные управляемые клапаны. Технический результат заключается в повышении точности регулирования всех компонентов, подаваемых в генератор газа, и обеспечение взрывобезопасности работы устройства. 1 з.п. ф-лы, 1 ил.
1. Установка для газодинамических испытаний, содержащая испытательную камеру с аэродинамическим соплом, источник сжатого воздуха с магистралью высокого давления, систему регулирования подачи сжатого воздуха с регулируемыми клапанами, датчиками давления, датчиком температуры и регулятором расхода воздуха, установленным в магистрали высокого давления, газовый генератор со смесительным ресивером, топливными форсунками и системой зажигания, подключенный входом к магистрали высокого давления, а выходом - к входу аэродинамического сопла испытательной камеры, систему подачи топлива, подключенную к топливным форсункам и имеющую регулятор расхода топлива, и систему подачи кислорода, подключенную к смесительному ресиверу и имеющую регулятор расхода кислорода, причем регулятор расхода воздуха выполнен в виде редукционного клапана с полостью управления и расходного критического сопла, установленного в магистрали высокого давления между редукционным клапаном и газовым генератором, а система регулирования подачи сжатого воздуха имеет пневморедуктор, регулируемый клапан и ресивер, подключенный к полости управления редукционного клапана непосредственно и связанный с атмосферой через управляемые клапаны, отличающаяся тем, что установка снабжена источником постоянного давления нейтрального газа, регуляторы расхода топлива и кислорода выполнены в виде управляемых редукционных клапанов, полость управления каждого из которых подключена к источнику постоянного давления нейтрального газа через дополнительные пневморедуктор, регулируемый клапан и ресивер, связанный с атмосферой через дополнительные управляемые клапаны.
2. Установка по п. 1, отличающаяся тем, что полость управления редукционного клапана системы регулирования подачи сжатого воздуха подключена через пневморедуктор, регулируемый клапан и ресивер к источнику постоянного давления нейтрального газа.
Способ получения эпоксидных смол | 1961 |
|
SU149566A1 |
СПОСОБ АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЙ МОДЕЛИ ЛЕТАТЕЛЬНОГО АППАРАТА (ВАРИАНТЫ) И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2421702C1 |
СПОСОБ СОЗДАНИЯ ПОТОКА ГАЗА В ГИПЕРЗВУКОВОЙ ВАКУУМНОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЕ И АЭРОДИНАМИЧЕСКАЯ ТРУБА | 2011 |
|
RU2482457C1 |
Авторы
Даты
2018-06-19—Публикация
2017-05-25—Подача