КАПИЛЛЯРНО-ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ИЗВЛЕЧЕНИЯ МИКРО- И НАНОЧАСТИЦ СОЕДИНЕНИЙ МЕТАЛЛОВ ИЗ ТОНКИХ ФРАКЦИЙ ГОРНЫХ ПОРОД, РУД И ТЕХНОГЕННЫХ ПРОДУКТОВ Российский патент 2018 года по МПК B82B3/00 

Описание патента на изобретение RU2659871C1

Изобретение относится к способам извлечения микро- и наночастиц соединений металлов, составляющих примеси (или микропримеси) в горных породах, рудах и(или) различных техногенных продуктах из тонких фракций этих пород, капиллярно-электролитическим способом, с дальнейшим анализом извлеченных частиц микрорентгеноспектральным методом (далее микрозонд).

Известен способ отделения (концентрирования) минералов - микропримесей из горных пород и техногенных продуктов в тяжелых жидкостях (бромоформирование) с последующей магнитной и электромагнитной сепарацией тяжелых фракций. В этом случае от матрицы (горной породы, техногенного продукта) отделяется ее часть (доли процента и единицы процентов, реже первые десятки процентов) [М.Н. Чуева. Минералогический анализ шлихов и рудных концентратов. // М., Госгеолиздат, 1950. - 179 с.].

Недостатком данного метода является то, что до определенной крупности матричных минералов (до 0,045 мм) микро- и наночастицы выделяются в тяжелую фракцию при разделении в тяжелых жидкостях, но поскольку минералы-микропримеси локализованы большей частью в тонкой фракции исследуемых объектов, то необходимо очень тонкое измельчение материала. Если же размер частиц фракции менее 0,045 мм, то происходит агрегирование микро- и наночастиц с частицами матричного материала и частицы не выпадают в тяжелую фракцию. Микро- и наночастицы соединений металлов адсорбируются и на более крупном материале. Применение бромоформирования совместно с центрифугированием также не дает нужного результата.

Известен метод капиллярного извлечения микро- и наночастиц, который является прототипом к заявляемому решению [Сметанников А.Ф. Капиллярный метод извлечения микро- и наночастиц минералов из тонких фракций для последующего микрозондового анализа. Современные проблемы теоретической, экспериментальной и прикладной минералогии (Юшкинские чтения 2014). Материалы минералогического семинара с международным участием. Сыктывкар, 2014, с. 177, 178]. Суть этого метода заключается в свойствах материала (тонких фракций) крупностью менее 0,25 мм при смешивании с жидкостью (дистиллированной водой) образовывать суспензию, при этом расстояние между отдельными частицами сопоставимо с размером частиц и образует "подобие" капиллярного пространства. Вода в капиллярном пространстве приобретает структуру, заряд и становится агрессивной средой, что способствует экстрагированию микро- и наночастиц минералов микропримесей и соединений металлов, адсорбированных на матричных минералах в капиллярный раствор. Свойства дисперсионных систем обсуждались в работах Дерягина. [Дерягин Б.В., Чураев Н.В., Овчаренко Ф.Д. и др. Вода в дисперсных системах // М.: Химия, 1989. - 288 с.] Извлечение частиц осуществляется следующим образом. Смешивается материал тонких фракций с дистиллированной водой и капля суспензии наносится на подложку из изостатического графита. Капля образует правильную полусферу и при ее высыхании в течение 1-1,5 часов в соответствии с законом испарительной концентрации (эвапорации) экстрагированные микро- и наночастицы вместе с остаточным раствором мигрируют к основанию сферы и осаждаются на подложке. После полного высыхания материал капли (полусферы) снимают, а осажденные частицы на подложке исследуют под микрозондом (фиг. 1). Этим способом были идентифицированы более 50 минералов, представляющих собой самородное золото, интерметаллиды и твердые растворы Au, Cu, Ag, Zn, Pb, циркон, минералы Sn, монацит, самородные металлы и интерметаллиды Ni, Sn, Cu, Fe, Cr, Ti и др., являющиеся микропримесями в нерастворимом в воде остатке соляных пород Верхнекамского месторождения [Сметанников А.Ф., Филиппов В.Н. Некоторые особенности минерального состава соляных пород и продуктов их переработки (на примере Верхнекамского месторождения солей)//Проблемы минералогии, петрографии и металлогении. Научные чтения памяти П.Н. Чирвинского: сб. статей. Пермь, 2010. - Вып. 13. - С. 99-113]. Размеры микро- и наночастиц составляли от 100 нанометров до 5-10 микрометров.

Недостатком данного метода является неполное извлечение микро- и наночастиц микропримесей, доказанное несоответствием их количества выявленного капиллярным методом элементному содержанию по данным масс-спектрометрического анализа. Тем не менее, этот метод послужил прототипом для обоснования способа извлечения микро- и наночастиц из тонких фракций, использующего методы интенсификации природных свойств капиллярных систем.

Предлагаемым изобретением решается задача создания способа извлечения микро- и наночастиц минералов-микропримесей и соединений металлов, находящихся в адсорбированном состоянии на матричных минералах, в тонких фракциях различных руд, нерастворимом в воде остатке соляных пород и других, в том числе и техногенных, "субстанциях" капиллярно-электролитическим способом. При этом, может решаться обратная задача очищения какой либо "субстанции" от примесей соединений металлов или частиц, с высокой степенью чистоты очищаемой матрицы.

Для достижения указанного технического результата в способе извлечения микро- и наночастиц соединений металлов из тонких фракций горных пород, руд и техногенных продуктов для последующего микрозондового анализа, включающем приготовление суспензии из тонких фракций исследуемого материала и соляного раствора, нанесение суспензии на подложку из графита до образования правильной полусферы, причем к подложке из графита и исследуемому материалу подводят электроды и пропускают постоянный ток напряжением от 4 до 6 вольт до высыхания полусферы образованной суспензией, затем осадок, образованный микрочастицами, исследуют.

Отличительными признаками предлагаемого способа от указанного выше известного, наиболее близкого к нему, является то, что к подложке из графита и исследуемому материалу подводят электроды и пропускают постоянный ток напряжением от 4 до 6 вольт до высыхания полусферы образованной суспензией, затем осадок, образованный микрочастицами, исследуют, в частном случае исполнения суспензию из тонких фракций исследуемого материала готовят на 0,5-1,0-процентном растворе соли.

Благодаря наличию этих признаков предлагаемый способ позволяет осуществлять наиболее полное извлечение микро- и наночастиц микропримесей из присутствующих в горных породах, рудах и(или) различных техногенных продуктах из тонких фракций этих пород.

Техническим результатом является создание (разработка) способа наиболее полного извлечения микро- и наночастиц неизвестного состава из каких либо продуктов, для их дальнейшей диагностики и(или) очистки технических продуктов от микропримесей.

На фиг. 1 размещены четыре фото, иллюстрирующих способ извлечения частиц по прототипу, где слева направо показано:

на фото №1 - чистая пластинка графита;

на фото №2 - пластинка с высохшей каплей исследуемой суспензии;

на фото №3 - пластинка со снятой сферой и виден материал, высаженный на подложку в результате испарительной концентрации;

на фото №4 - высохшая капля (плоской стороной кверху.

На фиг. 2 размещены три фото следов осаждения микро и наначастиц по заявляемому способу, где слева направо показано:

на фото №1 - результат первого опыта - осадок после капиллярного выщелачивания;

на фото №2 - результат второго опыта - осадок после электролитического анодного выщелачивания;

на фото №3 - результат третьего опыта - осадок после катодного выщелачивания.

Заявляемый способ осуществляется следующим образом. Исследуемый материал дробится и классифицируется по классам крупности способом мокрого рассева и высушивается. Из порций этого материала готовится суспензия с использованием дистиллированной воды с добавлением какой-либо соли (испытания проходили с применением NaCl). Затем капля суспензии наносится на пластинку графита, образуя правильную полусферу. С нижней стороны пластинки графита присоединяется один электрод со знаком «плюс» (образующий с пластинкой графита анодную часть системы). Второй электрод со знаком «минус» служит катодом и погружается в сферу, сформированную суспензией (не касаясь подложки графита). Затем включается постоянный ток и начинается процесс электролитического извлечения (отсоединения) микро- и наночастиц с одновременным их осаждением на подложку. Одновременно с высыханием суспензии в полусфере заканчивается и процесс извлечения. Далее высохшая сфера снимается тонким лезвием с пластинки графита и осадок, образованный микрочастицами, изучается под микрозондом.

Полярность электродов можно поменять в случае, если на подложку осаждается много матричных минералов, поскольку главным свойством (эффектом) является электролитическое извлечение микрочастиц в капиллярное пространство.

Были проведены три опыта. Первый из них - это капиллярное осаждение, без применения постоянного тока и присутствия электролитсодержащих ионов. Второй опыт - анодное осаждение, когда анодом служит пластинка графита. Третий опыт с переменой полюсов, когда анодом служит верхний (положительный) электрод, а катодом - пластинка графита. На фиг. 2 размещены три фото следов осаждения всех трех опытов.

На пластинке от первого опыта (капиллярное выщелачивание) практически отсутствуют матричные минералы, но и количество выявленных минералов микропримесей минимально (фото №1)). На второй пластинке (анодное осаждение) сплошная корка осажденных матричных минералов, количество микрочастиц на 1-2 порядка выше, чем в первом опыте (фото №2). На третьей пластинке (анод - верхний электрод) количество матричных минералов значительно меньше, чем во втором опыте, но больше, чем при капиллярном выщелачивании (фото №3). Количество микрочастиц меньше, чем во втором опыте, но больше чем в первом опыте. Во втором опыте, где в качестве анода используется пластинка графита, процесс осаждения усиливается влиянием температурного градиента, поскольку пластинка графита при прохождении тока разогревается и это служит дополнительным фактором полноты осаждения микрочастиц вместе с матричными минералами. В третьем опыте, где анодом служит только электрод, эффект экстрагирования близок к анодному варианту, но осаждение матричных минералов значительно меньше, т.к. площадь анода, в отличие от второго варианта, мала и температурный градиент невысок. Осадок на графитовой подложке представляет собой микропримеси рудных минералов, соединений металлов металлических частиц, содержащихся в различных породах, рудах и техногенных продуктах. В результате проведенных опытов выяснено, что природные свойства воды в капиллярном пространстве меняются под воздействием электрического поля, создаваемого источником постоянного тока, напряжением 4-6 вольт, в результате чего капиллярный раствор приобретает свойства электролита. Электролитные свойства капиллярного раствора усиливаются введением в раствор электролитобразующих ионов, например иона хлора, путем растворения в дистиллированной воде поваренной соли. Концентрация соли в растворе определялась в эксперименте. Начальная концентрация минимальная (0,5%), при которой уверенно фиксировались осажденные частицы. Увеличение концентрации соли в растворе сопровождалось увеличением количества осажденных частиц (частоты встречаемости). Концентрация соли выше 1% не влияла на количество осажденных частиц. Это позволяет экстрагировать в капиллярный раствор на 1-2 порядка большее количество микро- и наночастиц в сравнении с прототипом, т.о. показано преимущество применения электролитического способа извлечения микро- и наночастиц над капиллярным.

Предлагаемым способом по заявляемому изобретению обеспечивается максимальное извлечение микро- и наночастиц из тонких фракций нерастворимых остатков солей, руд и техногенных продуктов за счет следующих факторов: 1) создания электрического поля, обуславливающего свойства электролита в суспензии из материала тонких фракций и раствора соли; 2) осуществления возможности замены свойства электролита путем создания кислотной или основной среды при введении в суспензию кислот или оснований, ионы которых усиливают выщелачивающие (экстрагирующие) свойства электролита.

Указанные факторы обеспечивают максимальное извлечение микро- и наночастиц и фиксацию их на графитовой подложке для последующего анализа микрозондовым методом. Процесс капиллярно-электролитического извлечения (экстрагирования) микро- и наночастиц включает воздействие постоянного тока в присутствии ионов, формирующих электролит, обуславливающий электрохимические процессы извлечения адсорбированных частиц. Причем возможно решать и прямую задачу - извлечение микро- и наночастиц из нерастворимых остатков солей, руд и техногенных продуктов, а также обратную задачу - "очищение" какой-либо тонкой фракции материала от примесей минералов и металлических частиц, не извлекаемых обычными способами.

Конечной целью процесса капиллярно-электролитического извлечения и осаждения микрочастиц является получение информации о форме нахождения элементов - микропримесей, их диагностике, идентификации и возможности использования на практике. Кроме того, вторым направлением или целью является выделение минеральных или синтетических сред с крупностью материала менее 45 микрон с их очисткой и методом капиллярно-электролитического извлечения из них микропримесей.

Полученный концентрат может быть использован для получения фундаментальных знаний о составе супермикропримесей пород, руд, нерастворимых остатков соляных пород и техногенных продуктов, и в перспективе может быть применен в микроэлектронике. Тонкие фракции, очищенные от микропримесей, могут быть также использованы в технике.

Авторами было выявлено, что наиболее оптимальным является применение капиллярно-электролитического способа извлечения микро- и наночастиц с приготовлением экстрагирующего раствора (выщелачивающего) раствора на солевой основе, с соотношением NaCl к H2O как 1:99. Эффект выщелачивания (экстрагирования) в этом случае возрастает на 1-2 порядка в сравнении с прототипом, т.к. формируется электролит с сильными экстрагирующими свойствами, о чем свидетельствуют практические сравнительные результаты, полученные при капиллярном выщелачивании тонких фракций нерастворимого остатка соляных пород и капиллярно-электролитическим способом.

Похожие патенты RU2659871C1

название год авторы номер документа
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ ГЛИНИСТОГО РУДНОГО И ТЕХНОГЕННОГО СЫРЬЯ 2012
  • Бордунов Сергей Владимирович
RU2496891C1
СПОСОБ ДОИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ ГАЛЕ-ЭФЕЛЬНЫХ ОТВАЛОВ И ХВОСТОВ ПРОМЫВКИ ПЕСКОВ РОССЫПНЫХ МЕСТОРОЖДЕНИЙ 2019
  • Секисов Артур Геннадиевич
  • Петухов Александр Александрович
  • Шевченко Юрий Степанович
  • Лавров Александр Юрьевич
  • Зыков Николай Васильевич
  • Королев Вячеслав Сергеевич
  • Долгов Алексей Вячеславович
RU2743160C2
СПОСОБ ОБОГАЩЕНИЯ ТЕХНОГЕННЫХ ЗОЛОТОСОДЕРЖАЩИХ ОБРАЗОВАНИЙ 2017
  • Богомяков Роман Владимирович
  • Литвинова Наталья Михайловна
  • Рассказова Анна Вадимовна
  • Хрунина Наталья Петровна
RU2646269C1
НАНОТЕХНОЛОГИЧЕСКИЙ СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ ИЗ ПОРОД И РУД ЧЕРНОСЛАНЦЕВЫХ ФОРМАЦИЙ И ПРОДУКТОВ ИХ ПЕРЕРАБОТКИ 2010
  • Олейникова Галина Андреевна
  • Панова Елена Геннадиевна
  • Вялов Владимир Ильич
  • Кудряшов Валерий Леонидович
  • Сербина Марина Николаевна
  • Фадин Ярослав Юрьевич
RU2455237C1
СПОСОБ ОБНАРУЖЕНИЯ НАЛИЧИЯ МИКРОБНОЙ БИОМАССЫ ЗЕМНОГО ТИПА НА КОСМИЧЕСКИХ ТЕЛАХ 2015
  • Манагадзе Георгий Георгиевич
  • Воробьева Елена Алексеевна
  • Лучников Константин Александрович
  • Сафронова Анастасия Александровна
  • Чумиков Александр Евгеньевич
  • Манагадзе Нина Георгиевна
RU2586778C1
СПОСОБ РАЗДЕЛЕНИЯ НАНО- И МИКРОРАЗМЕРНЫХ ЧАСТИЦ ПРИ ОБОГАЩЕНИИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ 2017
  • Иванов Николай Аркадьевич
  • Немаров Александр Алексеевич
  • Кондратьев Виктор Викторович
  • Горовой Валерий Олегович
  • Лебедев Николай Валентинович
  • Колосов Александр Дмитриевич
  • Небогин Сергей Андреевич
  • Клешнин Антон Александрович
RU2696732C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗОЛОТОНОСНОСТИ ГОРНЫХ ПОРОД 2013
  • Добренко Наталья Андреевна
  • Ставрова Ольга Олеговна
RU2526959C1
СПОСОБ ПУЛЬПОПОДГОТОВКИ К ФЛОТАЦИИ МАГНИТНОЙ ФРАКЦИИ ИЗ ПРОДУКТОВ ОБОГАЩЕНИЯ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ РУД, СОДЕРЖАЩИХ ФЕРРОМАГНИТНЫЕ МИНЕРАЛЫ ЖЕЛЕЗА И БЛАГОРОДНЫХ МЕТАЛЛОВ 2008
  • Чебурашкин Станислав Георгиевич
RU2370316C1
СПОСОБ ИЗВЛЕЧЕНИЯ НАНОРАЗМЕРНЫХ ЧАСТИЦ ИЗ ТЕХНОГЕННЫХ ОТХОДОВ ПРОИЗВОДСТВА ФЛОТАЦИЕЙ 2019
  • Кондратьев Виктор Викторович
  • Машович Андрей Яковлевич
  • Горовой Валерий Олегович
  • Колосов Александр Дмитриевич
  • Кижняев Валерий Николаевич
  • Клешнин Антон Александрович
RU2692386C1
СПОСОБ ПОЛУЧЕНИЯ И ПОДГОТОВКИ ТВЕРДЫХ ПРОБ ДЛЯ ИССЛЕДОВАНИЯ 1996
  • Аполицкий В.Н.
RU2155951C2

Иллюстрации к изобретению RU 2 659 871 C1

Реферат патента 2018 года КАПИЛЛЯРНО-ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ИЗВЛЕЧЕНИЯ МИКРО- И НАНОЧАСТИЦ СОЕДИНЕНИЙ МЕТАЛЛОВ ИЗ ТОНКИХ ФРАКЦИЙ ГОРНЫХ ПОРОД, РУД И ТЕХНОГЕННЫХ ПРОДУКТОВ

Использование: для извлечения микро- и наночастиц минералов, соединений металлов из тонких фракций горных пород, руд и техногенных продуктов. Сущность изобретения заключается в том, что способ извлечения микро- и наночастиц включает приготовление суспензии из тонких фракций исследуемого материала и дистиллированной воды, нанесение суспензии на подложку из графита до образования правильной сферы, к подложке из графита и к исследуемому материалу подводят электроды и пропускают постоянный ток напряжением от 4 до 6 В до высыхания сферы, образованной суспензией, затем осадок, образованный микрочастицами, исследуют. Технический результат: обеспечение возможности полного извлечения микро- и наночастиц неизвестного состава из каких-либо продуктов. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 659 871 C1

1. Способ извлечения микро- и наночастиц соединений металлов из тонких фракций горных пород, руд и техногенных продуктов для последующего микрозондового анализа, включающий приготовление суспензии из тонких фракций исследуемого материала и дистиллированной воды, нанесение суспензии на подложку из графита до образования правильной сферы отличающийся тем, что к подложке из графита и к исследуемому материалу подводят электроды и пропускают постоянный ток напряжением от 4 до 6 В до высыхания сферы образованной суспензией, затем осадок образованный микрочастицами, исследуют.

2. Способ извлечения микро- и наночастиц соединений металлов из тонких фракций горных пород, руд и техногенных продуктов для последующего микрозондового анализа по п. 1, отличающийся тем, что суспензию из тонких фракций исследуемого материала готовят на 0,5-1,0%-ном растворе соли.

Документы, цитированные в отчете о поиске Патент 2018 года RU2659871C1

НАНОТЕХНОЛОГИЧЕСКИЙ СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ ИЗ ПОРОД И РУД ЧЕРНОСЛАНЦЕВЫХ ФОРМАЦИЙ И ПРОДУКТОВ ИХ ПЕРЕРАБОТКИ 2010
  • Олейникова Галина Андреевна
  • Панова Елена Геннадиевна
  • Вялов Владимир Ильич
  • Кудряшов Валерий Леонидович
  • Сербина Марина Николаевна
  • Фадин Ярослав Юрьевич
RU2455237C1
УСТАНОВКА ДЛЯ ИЗВЛЕЧЕНИЯ ВЕЩЕСТВ И ЧАСТИЦ ИЗ СУСПЕНЗИЙ И РАСТВОРОВ 1995
  • Жабреев В.С.
RU2098193C1
СЕПАРАТОР 2006
  • Дядин Валерий Иванович
  • Латкин Александр Сергеевич
  • Козырев Андрей Владимирович
  • Подковыров Виктор Георгиевич
  • Сочугов Николай Семенович
RU2315662C1
US 6875254 B2, 05.04.2005
US 4268307 A1, 19.05.1981.

RU 2 659 871 C1

Авторы

Сметанников Андрей Филиппович

Оносов Дмитрий Валентинович

Даты

2018-07-04Публикация

2016-12-20Подача