УСТРОЙСТВО НЕЛИНЕЙНОЙ РАДИОЛОКАЦИИ Российский патент 2018 года по МПК F41H11/136 

Описание патента на изобретение RU2660391C1

Изобретение относится к области технических средств обнаружения мин с широкой зоной поражения (МШЗП). Такие мины (противобортовые и противокрышевые) имеют в своей конструкции систему дистанционного наведения, включающую в себя акустический и оптический датчики цели [1,2].

Известны радиолокаторы подповерхностного зондирования, предназначенные для выявления замаскированных взрывных устройств [3]. Недостатком таких приборов является малая дальность обнаружения – всего несколько метров и большое число ложных срабатываний от неоднородностей маскирующего слоя грунта, растительности или снега, что снижает темпы поиска.

Известны средства обнаружения, основанные на способе нелинейной радиолокации. Они включают в себя источник зондирующего СВЧ электромагнитного поля и приемник гармоник отраженного сигнала [4].

Известно устройство нелинейного радиолокатора, состоящего из вынесенного передающего пункта и пункта управления и приема. Увеличение дальности обнаружения обеспечивается за счет использования двухпозиционного нелинейного радиолокатора и мощных широкополосных зондирующих сигналов с большой базой [5].

Использование данных средств ограничено малой скоростью поиска, низкой безопасностью этого процесса и незначительной дальностью обнаружения при поиске МШЗП. Это обусловлено большим уровнем помех на местности, засоренной мелкими предметами с нелинейной электропроводностью (контактирующие осколки снарядов, куски ржавой колючей проволоки, элементы разбитых электронных плат и др.). Наличие многочисленных «нелинейных» целей снижает возможность обнаружения МШЗП, снижая этим скорость поиска и его безопасность.

Техническим результатом изобретения является обеспечение безопасности и высокой скорости поиска противотанковых МШЗП при использовании нелинейной радиолокации на любой местности.

Поставленный технический результат достигается введением в состав двухпозиционного нелинейного радиолокатора комплекса источников акустического и амплитудно-модулированного оптического полей, селективных регистраторов низкочастотных сигналов, подключенных к выходам СВЧ приемников гармоник отраженных сигналов, а также передатчик и приемник радиолинии управления. Возбуждающее акустическое и оптическое поля, воздействуя соответственно на акустический и оптический датчики мины, изменяют их нелинейные отражательные свойства, что обуславливает появление низкочастотной параметрической амплитудной модуляции у СВЧ гармоник отраженного электромагнитного поля [6,7].

При этом селективные регистраторы низкочастотных (НЧ) сигналов настроены на частоту акустического поля и частоту амплитудной модуляции оптического поля.

На чертеже 1 показана структурная схема устройства нелинейной радиолокации.

Устройство содержит излучатель СВЧ электромагнитного поля 1, источник акустического поля 2, излучатель амплитудно-модулированного оптического поля 3, СВЧ приемник гармоник 4, селективные НЧ регистраторы 5 и 6, передатчик радиолинии управления 7, приемник радиолинии управления 8.

При этом низкочастотный регистратор 5 настроен на частоту акустического поля, а регистратор 6 – на частоту амплитудной модуляции оптического поля.

Устройство нелинейной радиолокации работает следующим образом.

Излучатель СВЧ электромагнитного поля 1, установленный на пункте передачи, осуществляет сканирование местности СВЧ лучом, при этом источник акустического поля 2 и излучатель амплитудно-модулированного оптического поля 3 выключены. При появлении гармоник в спектре отраженного СВЧ электромагнитного сигнала от объекта поиска 9, фиксируемых приемником 4, и характерных как для МШЗП, так и для «помеховых предметов», в передатчике радиолинии управления формируется команда на включение источника акустического поля 2 и излучателя амплитудно-модулированного оптического поля 3, которая поступает на них через приемник радиолинии управления 8. Если объект поиска 9 является миной с акустическими и оптическими датчиками цели, то за счет воздействия комплекса дополнительных возбуждающих акустического и амплитудно-модулированного оптического поля, происходит изменение режимов работы нелинейных электронных компонентов датчиков цели (транзисторы, диоды, ПЗС матрицы, микросхемы и др.). Это вызывает появление амплитудной модуляции отраженного СВЧ сигнала на гармониках, фиксируемых селективными НЧ регистраторами 5 и 6. Таким образом осуществляется обнаружение мин с акустическими и оптическими датчиками цели в зоне действия НРЛС. В случае, если объект поиска является «помеховым предметом», то из-за отсутствия акустически и оптически чувствительных элементов ложных низкочастотных сигналов не возникает.

Включение энергозатратных источников возбуждающих акустического и оптического полей только при наличии СВЧ сигнала на гармониках, уменьшает общее энергопотребление, массу и размеры всего устройства. При этом увеличивается скорость поиска, а также повышается скрытность процесса обнаружения МШЗП, делая его более безопасным.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Валецкий О.А. Минное оружие. – М.: Крафт, 2009. 151-248 с.

2. Ключников К.А., Кудрявцев В.Н. "Противотанковая противокрышевая мина". Патент РФ на полезную модель № 52628, 10 апреля 2006.

3. Вопросы подповерхностной радиолокации. Под редакцией Гринева А.Ю. – М.: Радиотехника, 2005. 195-200 с.

4. Щербаков Г.Н., "Применение нелинейной радиолокации для дистанционного обнаружения малоразмерных объектов" // Специальная техника, № 1, 1999. С. 34-39.

5. Ирхин В.И. и др., "Устройство нелинейной радиолокации," полезная модель № 139761, 6 мая 2013.

6. Щербаков Г.Н., "Параметрическая локация - новый метод обнаружения скрытых объектов" // Специальная техника, № 4, 2000. С. 52-57.

7. Дождиков В.Г., Салтан М.И. Краткий энциклопедический словарь по информационной безопасности. – М.: ИАЦ "Энергия", 2010. С. 105.

Похожие патенты RU2660391C1

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ОБНАРУЖЕНИЯ НОСИМЫХ ОСКОЛОЧНЫХ ВЗРЫВНЫХ УСТРОЙСТВ 2012
  • Щербаков Григорий Николаевич
  • Анцелевич Михаил Александрович
  • Прохоркин Александр Геннадьевич
  • Верёвкин Александр Сергеевич
RU2540726C2
СПОСОБ ОБНАРУЖЕНИЯ ОСКОЛОЧНЫХ ВЗРЫВНЫХ УСТРОЙСТВ 2013
  • Щербаков Григорий Николаевич
  • Анцелевич Михаил Александрович
RU2601667C2
Способ оценки качества электромагнитного экрана 2018
  • Щербаков Григорий Николаевич
  • Верёвкин Александр Сергеевич
  • Рычков Андрей Владимирович
  • Мухамедов Тимур Наильевич
RU2685058C1
Способ и устройство обнаружения радиоуправляемых взрывных устройств с применением беспилотного летательного аппарата 2018
  • Анисимов Игорь Владиленович
  • Мазаев Артем Николаевич
  • Парфенцев Игорь Валерьевич
  • Ткач Владимир Николаевич
  • Ткач Никита Владимирович
RU2745658C2
СПОСОБ ОБНАРУЖЕНИЯ НОСИМЫХ ОСКОЛОЧНЫХ ВЗРЫВНЫХ УСТРОЙСТВ И ОГНЕСТРЕЛЬНОГО ОРУЖИЯ 2017
  • Щербаков Григорий Николаевич
  • Верёвкин Александр Сергеевич
  • Проценко Олег Петрович
  • Сахнов Евгений Николаевич
  • Сержантов Кирилл Евгеньевич
RU2668228C1
Обнаружитель радиоуправляемых взрывных устройств 2016
  • Анцелевич Михаил Александрович
  • Щербаков Григорий Николаевич
  • Верёвкин Александр Сергеевич
  • Мухин Сергей Александрович
  • Буликешев Данияр Гарипулович
RU2637725C2
Способ оценки качества электромагнитного экрана 2021
  • Щербаков Григорий Николаевич
  • Рычков Андрей Владимирович
  • Зиневич Николай Николаевич
  • Богати Сергей Роландович
  • Николаев Алексей Владимирович
  • Фещенко Ярослав Владимирович
  • Гусев Иван Александрович
RU2785082C1
РАДИОЛОКАЦИОННАЯ СИСТЕМА ОБНАРУЖЕНИЯ МАЛОСКОРОСТНЫХ И МАЛОРАЗМЕРНЫХ БПЛА 2021
  • Дудин Дмитрий Николаевич
  • Дудина Татьяна Владимировна
RU2795472C2
СПОСОБ И УСТРОЙСТВО ОБНАРУЖЕНИЯ ОБЪЕКТОВ ПОИСКА, СОДЕРЖАЩИХ МЕТАЛЛИЧЕСКИЕ КОНТАКТЫ, В НЕЛИНЕЙНЫХ РАДИОЛОКАТОРАХ БЛИЖНЕГО ДЕЙСТВИЯ 2016
  • Замятина Ирина Николаевна
  • Дмитриев Вадим Владимирович
RU2614038C1
СПОСОБ И УСТРОЙСТВО НЕЛИНЕЙНОЙ РАДИОЛОКАЦИИ 2011
  • Ирхин Владимир Иванович
  • Матюгин Сергей Никандрович
RU2474839C1

Иллюстрации к изобретению RU 2 660 391 C1

Реферат патента 2018 года УСТРОЙСТВО НЕЛИНЕЙНОЙ РАДИОЛОКАЦИИ

Изобретение относится к области технических средств обнаружения противотанковых мин с широкой зоной поражения. Техническим результатом изобретения является обеспечение безопасности и высокой скорости поиска противотанковых мин с широкой зоной поражения при использовании нелинейной радиолокации на любой местности. Двухпозиционное устройство нелинейной радиолокации состоит из пункта передачи с излучателем СВЧ электромагнитного поля, источником акустического поля, излучателем амплитудно-модулированного оптического поля, приемником радиолинии управления и пункта приема, с СВЧ приемником гармоник, селективными НЧ регистраторами, передатчиком радиолинии управления. Новым в составе устройства нелинейной радиолокации является введение источников акустического и амплитудно-модулированного оптического полей, селективных регистраторов низкочастотных сигналов, подключенных к выходам СВЧ приемника гармоник отраженных сигналов, передатчика радиолинии управления, подключенного к выходам селективных регистраторов низкочастотных сигналов, а также приемника радиолинии управления, подключенного к входам источников акустического и амплитудно-модулированного оптического полей. При фиксации приемником гармоник сигналов, характерных как для МШЗП, так и для «помеховых предметов», в передатчике радиолинии управления формируется команда на включение источника акустического поля и излучателя амплитудно-модулированного оптического поля, которая поступает на них через приемник радиолинии управления. Если объект поиска является миной с акустическими и оптическими датчиками цели, то параметрическое воздействие возбуждающих полей изменяет их нелинейные отражательные свойства, что вызывает появление низкочастотной амплитудной модуляции у СВЧ гармоник отраженного электромагнитного поля, за счет чего осуществляется обнаружение противотанковых МШЗП в зоне действия НРЛС. Если объект поиска является «помеховым предметом», то из-за отсутствия акустически и оптически чувствительных элементов ложных низкочастотных сигналов не возникает. Уменьшение общего энергопотребления, массы и размеров всего устройства, а также повышение скрытности процесса обнаружения мин с широкой зоной поражения осуществляется за счет включения энергозатратных источников возбуждающих акустического и оптического полей только при наличии СВЧ сигнала на гармониках. 1 ил.

Формула изобретения RU 2 660 391 C1

Устройство обнаружения противотанковых мин с широкой зоной поражения, содержащее разнесенные в пространстве пункт передачи с излучателем СВЧ электромагнитного поля и пункт приема с приемником гармоник отраженного поля от объекта поиска СВЧ поля, отличающееся тем, что в пункт передачи введены источники возбуждающих акустического и амплитудно-модулированного оптического полей, а также приемник радиолинии управления их включением, при этом выход приемника радиолинии подключен к управляющим входам источников акустического и оптического полей, а в пункт приема введены селективные регистраторы низкочастотных сигналов подключенных к выходу приемника гармоник, причем их выходы подключены к управляющему входу включения передатчика радиоуправления.

Документы, цитированные в отчете о поиске Патент 2018 года RU2660391C1

Способ получения мебельного лака 1960
  • Бланшей Ф.Б.
  • Высоцкий Л.С.
  • Гурович Е.Е.
  • Гендельштейн И.К.
  • Листопад А.А.
  • Обозный Ф.Г.
SU139761A1
УСТРОЙСТВО ОБНАРУЖЕНИЯ ПРОТИВОТРАНСПОРТНЫХ МИН 2001
  • Дикарев В.И.
  • Койнаш Б.В.
  • Сальников В.П.
  • Сандулов Ю.А.
RU2212712C2
УСТРОЙСТВО ОБНАРУЖЕНИЯ ПРОТИВОТРАНСПОРТНЫХ МИН 1997
  • Слипченко Н.Н.
  • Михайленко С.А.
  • Людвиг В.А.
  • Щербаков Г.Н.
  • Гизатуллин С.Н.
RU2124758C1
МИНОИСКАТЕЛЬ 2010
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Иванов Николай Николаевич
  • Ковешникова Мария Юрьевна
  • Михайлов Евгений Александрович
RU2451953C1
US7624667 B2, 01.12.2009
КЛАПАННОЕ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ 0
SU167705A1

RU 2 660 391 C1

Авторы

Щербаков Григорий Николаевич

Рычков Андрей Владимирович

Верёвкин Александр Сергеевич

Проценко Олег Петрович

Морланг Денис Андреевич

Юняшин Артем Олегович

Даты

2018-07-06Публикация

2017-03-16Подача