Изобретение относиться к экранировке от электромагнитных полей и может быть использовано для контроля эффективности электромагнитного экранирования различных устройств требующих защиты от внешних полей (неконтактные взрыватели инженерных мин, исполнительные приборы радиоуправляемых мин и разведывательно-сигнализационных приборов и др. [1]. Важно также оценить подверженность воздействию таких экранированных устройств зондированию СВЧ полей от поисковых нелинейных радиолокаторов [2].
Для оценки качества электромагнитного экранирования используют способ, на предварительном нагреве металлического экрана при пропускании через него электрического тока [3]. Затем, с использованием тепловизора, выявляют неоднородности на поверхности экрана, связанные с нарушением экранировки. Недостатки данного способа - отсутствие четкой связи между температурными неоднородностями и нарушениями в электромагнитной экранировке, большое время измерений, возможность термического повреждения экрана при измерениях.
Наиболее близким к заявленному изобретению является способ, основанный на облучении снаружи испытуемого замкнутого экрана первичным электромагнитным полем и измерением проникшего внутрь поля, обусловленного дефектами этого экрана [4].
Недостаток данного способа - нарушение целостности экрана из-за необходимости вывода сигнала с индикаторного зонда, расположенного внутри. Это затрудняет производить оценку качества замкнутого экрана с высоким экранным затуханием - из-за трудности обеспечения большой развязки между антенной и приемным трактом по всем путям, кроме основного, через индикаторный зонд. Кроме того, трудно оценить качество экранировки от зондирующих сигналов нелинейного радиолокатора, используемого для поиска специальных экранированных устройств.
Техническим результатом изобретения является повышение качества оценки электромагнитного экрана особенно - при исследовании экрана с большим экранным затуханием.
Поставленный технический результат достигается тем, что экран облучают снаружи первичным электромагнитным полем, а внутри исследуемого экрана размещают электромагнитный нелинейный отражатель и регистрируют новые спектральные компоненты в отраженном вторичном поле снаружи экрана. Так как излучатель электромагнитных волн и приемник работают на разных частотах, то это обеспечивает глубокую развязку первичного и вторичного сигналов. Кроме этого, при этом не нарушается целостность конструкции исследуемого экрана, так как пассивный нелинейный отражатель является полностью автономным устройством. Он не требует каких-либо соединительных проводов, выходящих из экрана наружу.
Дополнительно, с целью повышения достоверности оценки качества экрана нелинейный отражатель выполняют широкополосным, а облучение первичным полем и регистрация вторичного электромагнитного поля (продуктов нелинейности) осуществляют в широком диапазоне частот. Этим уменьшают влияние паразитных резонансных эффектов в неоднородностях экрана на оценку его качества.
На фиг. 1 показана структурная схема устройства, реализующая предлагаемый способ оценки качества электромагнитного экрана.
Устройство для оценки качества электромагнитного экрана 1 содержит нелинейный отражатель 2, размещенный внутри этого экрана. Передающее устройство 3 облучает исследуемый экран 1 снаружи. Приемное устройство 4, расположенное снаружи экрана, регистрирует новые спектральные компоненты в отраженном вторичном поле снаружи экрана. Наличие этих компонентов свидетельствует о нарушении целостности экрана и просачивании первичного и вторичного полей через его неоднородности (щели, стыки элементов конструкции и т.п.). Так как «просачивание» электромагнитного поля через щели в экране обладает частотной зависимостью, то измерение проводят в широком диапазоне частот с использованием широкополосного нелинейного отражателя.
Опробование предложенного способа было проведено в полевых и лабораторных условиях в несколько этапов.
На первом этапе (одночастотный вариант) использовалась поисковая переносная НРЛС НР-900ЕК «Коршун» [5]. Ее характеристики: Римп=200 Вт, длительность импульса τи=2 мкс, частота f=845 МГц, Рпр=10-12 Вт, Gпер=6, Gпр=6, поляризация - круговая, осуществлялась регистрация второй и третьей гармоник в спектре отраженного сигнала (новые спектральные компоненты). В качестве нелинейного электромагнитного отражателя применялась одновитковая рамочная антенна диаметром 10 см, нагруженная на нелинейный элемент (диод 2А201А). В эксперименте использовались различные замкнутые металлические экраны прямоугольной и цилиндрической формы размерами от 0,15…0,2 м до 0,3…0,4 м. Применялись как полностью замкнутые экраны, так и имеющие отверстия и щели с размерами от 0,03…0,05 до 0,1…0,2 см. Оценка качества экранов осуществлялась по дальности их обнаружения при размещении нелинейных отражателей внутри этих экранов. Установлено, что в зависимости от размеров щели или отверстия в стенке экрана дальность обнаружения лежала от нуля (при полной экранировке) до 15…20 м (когда длина щели лежала в резонансной области зондирующего СВЧ поля НРЛС НР-900ЕК).
Второй этап экспериментов проводился в безэховой камере. Качество экранировки в широкополосном режиме оценивалась по величине принимаемого сигнала на второй гармонике от нелинейного отражателя в различных экранах. Частота зондирующего СВЧ поля макета НРЛС изменялась в диапазоне от 640 МГц до 950 МГц. Широкополосным нелинейным отражателем являлась дипольная антенна «бабочка» [6], с диодом 2А201А в ее центре. Угол раскрыва антенны составлял 60°, поляризация антенны - линейная. Передатчик включал генератор Г4-37, фильтр низкой частоты, антенну П6-31. Прием второй гармоники осуществлялся антенной П6-23А и приемником П5-4Б с дополнительным фильтром на входе. Плотность потока мощности у объекта поддерживалась при изменении частоты постоянной и составляла 0,1 Вт/м2. Установлено, что при изменении частоты мощность принимаемого сигнала на второй гармонике изменялась на 20…25 дБ. Это изменение (в виде «всплесков») определялось размером и формой щели в экране, а также от ориентации щели относительно вектора электрической составляющей (максимально - при положении вектора Е зондирующего поля ортогонально щели).
Источники информации:
1. Шапиро Д.Н. Основы теории электромагнитного экранирования. Л-д, «Энергия», 1975 г., с 3-10.
2. Щербаков Г.Н. Обнаружение скрытых объектов. Изд. АРБАТ-ИНФОРМ, М., 2004, с. 57-82.
3. Горшков А.И. и др. Способ оценки качества электромагнитного экранирования узла уплотнения в электропроводящем экране с закрывающей его электропроводящей конструкцией. Патент РФ №2579176 с приоритетом от 22.09.2014 г.
4. Воробьев Е.А. Экранирование СВЧ конструкций, М., Советское радио, 1979, с. 87-88
5. NR-900EK Детектор нелинейных переходов [Электронный ресурс]: https://stt-group.ru/p3504180-900ek-detektor-nelineinyh.html
6. Ротхаммель Карлю Антенны. Изд. «Бояныч», С-Пб., 1998, с. 436-437
название | год | авторы | номер документа |
---|---|---|---|
Способ оценки качества электромагнитного экрана | 2021 |
|
RU2785082C1 |
СПОСОБ ОБНАРУЖЕНИЯ ОСКОЛОЧНЫХ ВЗРЫВНЫХ УСТРОЙСТВ | 2013 |
|
RU2601667C2 |
СПОСОБ И УСТРОЙСТВО ОБНАРУЖЕНИЯ ПРОТИВОПЕХОТНЫХ ВЗРЫВНЫХ УСТРОЙСТВ С КОНТАКТНО-ПРОВОДНЫМИ ДАТЧИКАМИ ЦЕЛИ | 2012 |
|
RU2497155C1 |
СПОСОБ И УСТРОЙСТВО ОБНАРУЖЕНИЯ НОСИМЫХ ОСКОЛОЧНЫХ ВЗРЫВНЫХ УСТРОЙСТВ | 2012 |
|
RU2540726C2 |
УСТРОЙСТВО НЕЛИНЕЙНОЙ РАДИОЛОКАЦИИ | 2017 |
|
RU2660391C1 |
СПОСОБ ОБНАРУЖЕНИЯ НОСИМЫХ ОСКОЛОЧНЫХ ВЗРЫВНЫХ УСТРОЙСТВ И ОГНЕСТРЕЛЬНОГО ОРУЖИЯ | 2017 |
|
RU2668228C1 |
Обнаружитель радиоуправляемых взрывных устройств | 2016 |
|
RU2637725C2 |
СПОСОБ ИМИТАЦИИ РАДИОЛОКАЦИОННОЙ ЦЕЛИ С НЕЛИНЕЙНЫМИ ЭЛЕКТРИЧЕСКИМИ СВОЙСТВАМИ | 2007 |
|
RU2339968C1 |
РАДИОЛОКАЦИОННАЯ СИСТЕМА ОБНАРУЖЕНИЯ МАЛОСКОРОСТНЫХ И МАЛОРАЗМЕРНЫХ БПЛА | 2021 |
|
RU2795472C2 |
СПОСОБ НЕЛИНЕЙНОЙ РАДИОЛОКАЦИИ | 2009 |
|
RU2436115C2 |
Изобретение относится к экранировке от электромагнитных полей и может быть использовано для контроля эффективности электромагнитного экранирования различных устройств, требующих защиты от внешних полей (неконтактные взрыватели инженерных мин, исполнительные приборы радиоуправляемых мин и разведывательно-сигнализационных приборов и др.). Способ оценки качества электромагнитного экрана заключается в том, что экран облучают снаружи первичным электромагнитным полем, а внутри исследуемого экрана размещают электромагнитный нелинейный отражатель и регистрируют новые спектральные компоненты в отраженном вторичном поле снаружи экрана. Дополнительно отражатель выполняют широкополосным, а облучение первичным полем и регистрацию вторичного электромагнитного поля (продуктов нелинейности) осуществляют в широком диапазоне частот. Техническим результатом является повышение качества оценки электромагнитного экрана, особенно - при исследовании экрана с большим экранным затуханием. Так как излучатель электромагнитных волн и приемник работают на разных частотах, то это обеспечивает глубокую развязку первичного и вторичного сигналов. Кроме этого, при этом не нарушается целостность конструкции исследуемого экрана, так как пассивный нелинейный отражатель является полностью автономным устройством. 1 з.п. ф-лы, 1 ил.
1. Способ оценки качества электромагнитного экрана, включающий облучение экрана первичным электромагнитным полем и регистрацию электромагнитного поля, проникающего внутрь экрана, отличающийся тем, что внутри экрана размещают нелинейный электромагнитный отражатель и регистрируют новые спектральные компоненты в отраженном вторичном поле снаружи экрана.
2. Способ по п. 1, отличающийся тем, что нелинейный отражатель выполнен широкополосным, а облучение первичным полем и регистрация вторичного электромагнитного поля осуществляется в широком диапазоне частот.
СПОСОБ ОЦЕНКИ КАЧЕСТВА ЭЛЕКТРОМАГНИТНОГО ЭКРАНИРОВАНИЯ УЗЛА УПЛОТНЕНИЯ ОТВЕРСТИЯ В ЭЛЕКТРОПРОВОДЯЩЕМ ЭКРАНЕ С ЗАКРЫВАЮЩЕЙ ЕГО ЭЛЕКТРОПРОВОДЯЩЕЙ КОНСТРУКЦИЕЙ | 2014 |
|
RU2579176C1 |
US 6255830 B1, 03.07.2001 | |||
EP 3156810 A1, 19.04.2017 | |||
УПРАВЛЯЕМОЕ ПНЕВМАТИЧЕСКОЕ СОПРОТИВЛЕНИЕ | 0 |
|
SU170772A1 |
УСТРОЙСТВО КОНТРОЛЯ ЗАЩИТЫ ОТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ | 2003 |
|
RU2254584C1 |
Бандажированное рабочее осевое колесо | 1960 |
|
SU136183A1 |
US 9625509 B1, 18.04.2017. |
Авторы
Даты
2019-04-16—Публикация
2018-08-31—Подача