Изобретение относится к способам и устройствам поиска с использованием магнитных и электрических полей, изменяемых объектом, с помощью индукционных катушек.
В настоящее время для диагностики состояния балластных материалов и грунтов подбалластной зоны земляного полотна железнодорожного пути применяют георадиолокационный способ (Инструкция по применению скоростной георадиолокационной диагностики железнодорожного пути. Утверждена распоряжением ОАО «РЖД» от 27 декабря 2012 г. №2704р), включающий георадар импульсного типа.
Недостатками георадиолокационного способа является низкая, до 8 метров, глубина обследования подбалластного слоя выемки, насыпи и ее основания, высокая стоимость оборудования, как правило, зарубежного производителя.
Известен способ индукционного частотного зондирования (RU 2152058, МПК G01V 3/10. А.К. Манштейн, Э.И. Эпов, В.В. Воевода, К.В. Сухорукова. Способ индукционного частотного зондирования. - 27.06.2000. Бюл. №18), включающий создание переменного магнитного поля последовательно на многих частотах, измерение вторичного магнитного поля приемными датчиками, расположенными на одной прямой с генераторной петлей, стабилизацию приемных датчиков в интервале рабочих частот, жесткую фиксацию положения датчиков относительно генераторной петли.
Способ предназначен для поиска и разведки пресных и соленых вод, обнаружения инженерных коммуникаций, захоронений промышленных отходов, экологического мониторинга.
Применяемые в настоящее время способы, для решения подобных задач, в том числе и указанный способ, имеют генераторную часть и приемные катушки (датчики), геометрические центры которых должны быть расположены на одной прямой, что трудно достижимо и приводит к колебаниям результатов измерений, расчетной недостоверности и не обеспечивает достаточной глубины обследования.
Известно устройство для импульсной индуктивной электроразведки (АС 807188, МПК G01V 3/10, Ф.М. Каменецкий, В.М. Тимофеев, А.А. Вакульский. Устройство для импульсной индуктивной электроразведки. - Опубл. 23.02.81, Бюл. №7), включающее последовательно соединенные генератор импульсов и генераторный контур измерительной части, который содержит приемный контур и последовательно соединенные коммутатор, импульсный усилитель, накопитель, регистратор и схему управления, выход которой подсоединен к управляемым входам генератора, коммутатора и накопителя, при этом устройство снабжено интегратором, вход которого подсоединен к выходу приемного контура, а выход - к входу коммутатора.
Недостатком данного устройства является то, что при зондировании возникают затухающие колебания, амплитуда которых пропорциональна величине вторичного магнитного поля, которые складываются. В результате чего возникают значительные погрешности, что не обеспечивает точности измерений и достаточной глубины обследования.
Цель изобретения - увеличение глубины обследования, повышение производительности обследования подбалластного слоя.
Указанная цель достигается тем, что магнитное поле возбуждают двухполярным импульсным током прямоугольной формы с паузой, а измерения производят в момент включения импульсов.
Сущностью изобретений по п. 1 является то, что магнитное поле создают разнополярным импульсным током прямоугольной формы с паузой при непрерывном перемещении источника магнитного поля, производят измерение вертикальной составляющей производной по времени вектора магнитной индукции в момент включения положительного и отрицательного импульсов тока прямоугольной формы с паузой, регистрируют результаты измерений в блок накопления снятых сигналов, рассчитывают удельное электрическое сопротивление грунтов железнодорожной насыпи и ее основания, строят их инженерно-геологический разрез, а сущностью изобретения по п. 2 является то, что источник постоянного тока соединен с коммутатором, генераторный и измерительный контуры размещены на движущемся транспортном средстве, при этом оба контура помещены под транспортным средством на расстоянии 300-500 мм от исследуемой поверхности насыпи, причем генераторный контур присоединен к коммутатору, а коммутатор и измерительный контур подключены к блоку накопления снятых сигналов, снабженному специальной программой.
На фиг. 1 представлена схема зондирования железнодорожной насыпи, ее основания импульсами тока, включающая железнодорожную насыпь 1, ее основание 2, источник импульсов 3, магнитное поле 4, направление перемещения 5 источника импульсов 3 с генераторным контуром 6. Формирование импульсов осуществляется коммутатором, подключающим на заданный интервал времени Т источник постоянного тока к генераторному контуру 6. Этот процесс периодически повторяется.
На фиг. 2 представлена схема режима «возбуждение-пауза», включающего положительный импульс 7, паузу 8, отрицательный импульс 9. Длительности разнополярных импульсов и паузы равны между собой.
На фиг. 3 представлена схема электрической части устройства для диагностики, включающая источник постоянного тока 10, коммутатор 11, генераторный контур 6, измерительный контур 12, блок накопления снятых сигналов 13.
На фиг. 4 представлена схема устройства для осуществления способа диагностики железнодорожной насыпи и ее основания, включающая транспортное средство 14, передвигающееся по рельсам 15, железнодорожную насыпь 1, основание насыпи 2. На транспортном средстве 10 размещены: источник постоянного тока 10, коммутатор 11, генераторный контур 6, измерительный контур 12, блок накопления снятых сигналов 13, причем оба контура (6, 12) расположены под транспортным средством 10, на расстоянии 300-500 мм от поверхности исследуемой насыпи 1 и ее основания 2. Коммутатор 11 и измерительный контур 12 подключены к блоку накопления снятых сигналов 13, снабженному специальной программой.
Предлагаемый способ диагностики железнодорожной насыпи и ее основания и устройство для его осуществления работают следующим образом:
Грунты подбалластной зоны разнообразны - песчаные, глинистые, скальные, торфяные и другие, но существуют природные пустоты, карсты, которые располагаются только в основании насыпи и в подбалластной зоне выемки на глубине более 10 метров. Они опасны, могут привести к нарушению устойчивости земляного полотна, что приведет к сходу подвижного состава. Перед проведением диагностики выбирают участки с признаками наличия карстов (провалы, резкое локальное изменение отметок поверхности земли) в районе расположения железнодорожного пути.
На выбранном участке железнодорожного пути определенной протяженности отмечают пикет начала движения. Так как источник магнитного поля непрерывно перемещается, то есть располагается в транспортном средстве, например в вагоне, то определяют оптимальную скорость перемещения транспортного средства и поддерживают ее постоянной на всей протяженности исследуемого участка железнодорожного пути.
Вместе с началом движения начинают зондировать железнодорожную насыпь и ее основание разнополярным импульсным током прямоугольной формы с паузой (фиг. 2), создавая магнитное поле (фиг. 1).
Формирование разнополярных импульсов прямоугольной формы осуществляют коммутатором, подключающим источник постоянного тока к генераторному контуру на заданный промежуток времени Т. Измерительным контуром фиксируют вертикальную составляющую производной по времени вектора магнитной индукции в момент включения положительного и отрицательного импульсов тока прямоугольной формы с паузой.
Множественность сигналов, поступающих в блок накопления (фиг. 3), означает, что ток подается многократно, с паузами, а сигнал измеряют при каждом новом включении тока.
Отличием предлагаемого способа диагностики является то, что измерения сигналов производят при кратковременном включении разнополярного тока, сменяющегося паузой, а измеренные сигналы накапливают, обрабатывают, строят инженерно-геологический разрез насыпи и ее основания.
Предлагаемый способ диагностики в режиме «возбуждение-пауза» позволяет увеличить глубину обследования подбалластной зоны по предварительным данным до 50 метров, проводить исследование грунта при зондировании его перемещающимся источником импульсов (генераторным контуром), повысить скорость диагностики железнодорожной насыпи и ее основания, что позволяет уменьшить время занятости железнодорожных путей общего пользования.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ И ОБРАБОТКИ ПЕРЕХОДНЫХ ПРОЦЕССОВ С ЗАЗЕМЛЕННОЙ ЛИНИЕЙ ПРИ ИМПУЛЬСНОМ ВОЗБУЖДЕНИИ ПОЛЯ ЭЛЕКТРИЧЕСКИМ ДИПОЛЕМ С ЦЕЛЬЮ ПОСТРОЕНИЯ ГЕОЭЛЕКТРИЧЕСКИХ РАЗРЕЗОВ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА С ПОМОЩЬЮ АППАРАТНО-ПРОГРАММНОГО ЭЛЕКТРОРАЗВЕДОЧНОГО КОМПЛЕКСА (АПЭК "МАРС") | 2012 |
|
RU2574861C2 |
Способ геоэлектроразведки и устройство для его осуществления | 2020 |
|
RU2752557C1 |
Многофункциональный автономный роботизированный комплекс диагностики и контроля верхнего строения пути и элементов железнодорожной инфраструктуры | 2020 |
|
RU2733907C1 |
Способ импульсной индуктивной геоэлектроразведки и устройство для его осуществления | 2016 |
|
RU2639558C2 |
СПОСОБ МОРСКОЙ ЭЛЕКТРОРАЗВЕДКИ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ И АППАРАТУРНЫЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2324956C2 |
Способ высокоточных электромагнитных зондирований и устройство для его осуществления | 2016 |
|
RU2629705C1 |
ИССЛЕДОВАТЕЛЬСКИЙ КОМПЛЕКС ДЛЯ МОРСКОЙ ЭЛЕКТРОРАЗВЕДКИ И СПОСОБ ЕЕ ОСУЩЕСТВЛЕНИЯ | 2019 |
|
RU2780574C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ МОРСКОЙ ЭЛЕКТРОРАЗВЕДКИ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ | 2006 |
|
RU2375728C2 |
Электроразведочное устройство для моделирования нестационарных электродинамических процессов | 1980 |
|
SU940108A1 |
АППАРАТУРНЫЙ КОМПЛЕКС ДЛЯ МОРСКОЙ ЭЛЕКТРОРАЗВЕДКИ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ И СПОСОБ МОРСКОЙ ЭЛЕКТРОРАЗВЕДКИ | 2012 |
|
RU2510052C1 |
Группа изобретений относится к способу и устройству поиска с использованием магнитных и электрических полей, изменяемых объектом, с помощью индукционных катушек. Способ диагностики железнодорожной насыпи, ее основания включает этапы, на которых магнитное поле создают разнополярным импульсным током прямоугольной формы с паузой при непрерывном перемещении источника магнитного поля, производят измерение вертикальной составляющей производной по времени вектора магнитной индукции в момент включения положительного и отрицательного импульсов тока прямоугольной формы с паузой, регистрируют результаты измерений в блок накопления снятых сигналов, рассчитывают удельное электрическое сопротивление грунтов железнодорожной насыпи и ее основания, строят их инженерно-геологический разрез. Технический результат – увеличение глубины, повышение производительности обследования подбалластного слоя, повышение эффективности обнаружения скрытых объектов и точности измерений. 2 н.п. ф-лы, 4 ил.
1. Способ диагностики железнодорожной насыпи, ее основания, включающий создание магнитного поля в насыпи и ее основании, измерение вертикальной составляющей производной по времени вектора магнитной индукции, отличающийся тем, что магнитное поле создают разнополярным импульсным током прямоугольной формы с паузой при непрерывном перемещении источника магнитного поля, производят измерение вертикальной составляющей производной по времени вектора магнитной индукции в момент включения положительного и отрицательного импульсов тока прямоугольной формы с паузой, регистрируют результаты измерений в блок накопления снятых сигналов, рассчитывают удельное электрическое сопротивление грунтов железнодорожной насыпи и ее основания, строят их инженерно-геологический разрез.
2. Устройство для осуществления способа диагностики по п. 1, включающее источник постоянного тока, коммутатор, генераторный контур, измерительный контур, блок накопления снятых сигналов, регистратор, отличающееся тем, что источник постоянного тока соединен с коммутатором, генераторный и измерительный контуры размещены на движущемся транспортном средстве, при этом оба контура помещены под транспортным средством на расстоянии 300-500 мм от исследуемой поверхности насыпи, причем генераторный контур присоединен к коммутатору, а коммутатор и измерительный контур подключены к блоку накопления снятых сигналов, снабженному специальной программой.
ГЕОРАДАРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ, ЗАГРЯЗНЕННОСТИ И ТОЛЩИНЫ СЛОЕВ ЖЕЛЕЗНОДОРОЖНОЙ И АВТОДОРОЖНОЙ НАСЫПИ С ИСПОЛЬЗОВАНИЕМ ОТРАЖАТЕЛЬНОГО ГЕОТЕКСТИЛЯ | 2014 |
|
RU2577624C1 |
Аппарат для динамического испытания автомобилей | 1956 |
|
SU109725A1 |
Способ геоэлектроразведки и устройстводля ЕгО ОСущЕСТВлЕНия | 1979 |
|
SU842681A1 |
US 2002050822 A1, 02.05.2002 | |||
US 5563513 A, 08.10.1996. |
Авторы
Даты
2018-07-09—Публикация
2017-08-17—Подача