Изобретение относится к области медицины, а именно к лучевой диагностике, офтальмологии, пластической и челюстно-лицевой хирургии, и может быть использовано для оценки положения глазных яблок у пациентов с травмами средней зоны лица.
По данным отечественных и зарубежных источников, на сегодняшний день число травм средней зоны лица, орбиты и глазного яблока продолжает расти. В связи с этим на первый план выходит своевременная диагностика таких повреждений и точность предоперационного планирования. Учитывая, что повреждения глазного яблока сопровождаются инвалидизацией людей трудоспособного возраста, вопросы оценки состояния и предупреждения развития возможных осложнений после травмы орбиты остаются крайне актуальными.
Известен способ определения величины смещения глазного яблока для предоперационной диагностики и лечения больных с повреждениями и посттравматическими деформациями орбиты (Рабухина Н.А., Голубева Г.И., Перфильев С.А., Караян А.С., Кудинова Е.С. Способ определения величины смещения глазного яблока. Патент РФ №2275842 - прототип). Данный способ заключается в проведении спиральной компьютерной томографии лицевого черепа. При этом получают срез изображения во фронтальной и/или аксиальной плоскостях. На полученных томограммах проводят произвольную горизонталь, пересекающую изображения обоих глазных яблок, измеряют хорды от наружной до внутренней границ изображения каждого глазного яблока и высоту сегментов. После чего вычисляют величину смещения по оригинальной формуле.
Также известен способ измерения линейных размеров глазницы и величины смещения глазного яблока на стороне повреждения по данным МСКТ при посттравматических дефектах и деформациях глазницы (Михайлюков В.М. Безрамная навигация в хирургическом лечении посттравматических дефектов и деформаций глазницы. Автореф. канд. дис, М., 2014, 24 с). Способ заключается в измерении линейных размеров глазницы и величины смещения глазного яблока у пациентов, основанных на аксиальных, сагиттальных и фронтальных срезах, полученных при МСКТ-исследовании.
Основными недостатками известных методов являются отсутствие стандартизации измерений положения глазных яблок до и после оперативного лечения, отсутствие стабильных костных ориентиров, по которым оценивают смещение глазного яблока, способы не учитывают индивидуальные особенности нижней стенки орбиты (непрямолинейный, вогнутый ход, с наличием локальных изогнутостей и истончений стенок). Данные признаки необходимо учитывать, так как морфометрические и анатомо-топографические параметры стенок орбиты имеют широкий диапазон вариантной анатомии, в зависимости от чего тактика оперативного вмешательства, хирургический доступ и выбор имплантатов может сильно отличаться у разных пациентов.
Достигаемым при осуществлении разработанного нами способа техническим результатом является получение точной оценки положения глазных яблок у пациентов с травмами орбиты даже при минимальном смещении глазного яблока, за счет:
- выравнивания сагиттальных изображений по ходу зрительного нерва в аксиальной реконструкции,
- воспроизведения границ глазного яблока и выделения заднего полюса глазного яблока как наиболее важного анатомического ориентира,
- наличия стабильного костного ориентира в измерениях - малого крыла клиновидной кости, что позволяет сравнивать и получать точные результаты не только для правой и левой орбит, но и оценивать положение глазных яблок до и после хирургического лечения,
- проведения перпендикуляра к заднему полюсу глазного яблока от верхней стенки орбиты до нижней с целью измерения расстояний до и после хирургического лечения для оценки эффективности реконструктивной операции.
Заявленный способ включает проведение мультиспиральной компьютерной томографии в положении пациента лежа на спине с позиционированием взора пациента прямо и центрально на цветовую метку, расположенную на гентри компьютерного томографа.
Полученное изображение выравнивают в сагиттальной плоскости по ходу зрительного нерва в аксиальной плоскости, обводят на изображении границы глазного яблока в сагиттальной плоскости с помощью инструмента «Эллипс», в мягкотканном режиме.
Проводят линию от костного ориентира - нижняя поверхность малого крыла клиновидной кости, к заднему полюсу глазного яблока, проводят перпендикуляр к проведенной линии по заднему полюсу глазного яблока.
Далее измеряют высоту верхней и нижней частей перпендикуляра, где высота верхней его части является расстоянием от заднего полюса глазного яблока до верхней границы орбиты, а высота нижней части перпендикуляра - от заднего полюса глазного яблока до нижней границы орбиты. Сравнивают полученные результаты для правого и левого глазных яблок, оценивая их положение с учетом положения заднего полюса глазного яблока.
Если значения высот верхних частей перпендикуляров для правого и левого глазных яблок совпадают, то считают положения глазных яблок нормальными.
Если значение разницы высот верхних частей перпендикуляров здоровой и травмированной орбиты менее 1,2 мм, делают вывод о минимальном смещении глазного яблока книзу.
Если значение разницы высот верхних частей перпендикуляров здоровой и травмированной орбиты 1,2 мм и более, делают вывод о наличии энофтальма.
По разнице высот нижних частей перпендикуляров судят о выраженности костно-травматических изменений нижней стенки орбиты и глубины смещения костных отломков в верхнечелюстной синус, и чем больше разница высот нижних частей перпендикуляров здоровой и травмированной орбит, тем больше отломки нижней стенки орбиты смещены в верхнечелюстной синус при травме орбиты.
Если значения высот верхних и нижних частей перпендикуляров, соответственно, здоровой и травмированной орбиты после операции равны, то делают вывод об эффективности восстановления нижней стенки орбиты и нормализации положения глазного яблока.
Способ оценки положения глазных яблок травмированной и здоровой орбит осуществляют следующим образом.
Мультиспиральную компьютерную томографию проводят пациенту с травмой орбиты с применением стандартных параметров для 640-срезовых томографов: область исследования - лицевой скелет, режим томографирования - объемный, толщина среза - 0,5 мм, угол наклона гентри - 0°, поле исследования - 16 см, напряжение - 100 кВ, сила тока - 60 мА, время исследования - 1-2 с, тип реконструкции - костный. При проведении исследования пациент находится в положении лежа на спине. Проведение мультиспиральной компьютерной томографии лицевого скелета отличается разработанной нами специальной укладкой головы пациента на столе томографа и позиционированием взора пациента прямо и центрально на цветовую метку, расположенную на гентри компьютерного томографа, что позволяет добиться ровного и симметричного положения глазных яблок, за счет чего исключается искажение результатов при построении измерений.
После сканирования добиваются полной симметричности изображений в аксиальной, сагиттальной и корональной плоскостях, выделяют нижнюю стенку орбиты и ее дефект.
Выравнивают изображение в сагиттальной плоскости по ходу зрительного нерва в аксиальной плоскости (фиг. 1).
На фиг. 1 представлена МСКТ, аксиальная (А) и сагиттальная (Б) реконструкции. Для получения наиболее оптимального изображения мягкотканных структур в сагиттальной плоскости, его выравнивают по ходу зрительного нерва в аксиальной плоскости.
Обводят границы глазного яблока на изображении в сагиттальной плоскости с помощью инструмента «Эллипс» (фиг. 2) в мягкотканном режиме.
На фиг. 2 представлена МСКТ, сагиттальная реконструкция. Глазное яблоко обведено на изображении в сагиттальной плоскости с помощью инструмента «Эллипс».
Проводят линию на выбранной реконструкции, идущую от стабильного костного ориентира (нижняя поверхность малого крыла клиновидной кости) к заднему полюсу глазного яблока (фиг. 3).
На фиг. 3. МСКТ, сагиттальная реконструкция. Линия, идущая от стабильного костного ориентира (нижняя поверхность малого крыла клиновидной кости) к заднему полюсу глазного яблока.
Проводят перпендикуляр к ранее проведенной линии по заднему полюсу глазного яблока (фиг. 4).
На фиг. 4. МСКТ, сагиттальная реконструкция. Перпендикуляр к ранее проведенной линии по заднему полюсу глазного яблока.
Измеряют высоту верхней и нижней частей перпендикуляра (фиг. 5). Сравнивают результаты по положению правого и левого глазного яблока, результаты до оперативного лечения и после.
На фиг. 5 представлена МСКТ, сагиттальная реконструкция. Измерение высоты верхней и нижней частей перпендикуляра.
По нашим данным, значения высоты верхней и нижней частей перпендикуляра позволяют судить о положении заднего полюса глазного яблока, что является крайне важным диагностическим параметром энофтальма.
В норме расстояние от верхней стенки орбиты до заднего полюса глазного яблока, т.е. значения высоты верхних частей перпендикуляров правой и левой орбит не должны отличаться. При разнице высоты верхних частей перпендикуляров менее 1,2 мм при сравнении здоровой и травмированной орбиты можно сделать вывод о минимальном смещении глазного яблока книзу.
Разница высоты верхних частей перпендикуляров 1,2 мм и более при сравнении здоровой и травмированной орбиты говорит о наличии энофтальма.
Разница высоты нижних частей перпендикуляров справа и слева позволяет судить о выраженности костно-травматических изменений нижней стенки орбиты и глубины смещения костных отломков в верхнечелюстной синус. В норме расстояния от заднего полюса глазного яблока до нижней стенки орбиты, т.е. значения высоты нижних частей перпендикуляров правой и левой орбит не должны различаться. Чем больше отломки нижней стенки орбиты смещаются в верхнечелюстной синус при травме орбиты, тем больше разница высоты нижних частей перпендикуляров здоровой и травмированной орбит.
При равном значении высоты верхних и нижних частей перпендикуляров здоровой и травмированной орбиты после операции можно сделать вывод об эффективности восстановления нижней стенки орбиты и нормальном положении глазного яблока.
ПРИМЕР 1. Пациент А., 49 лет, травма лица получена в результате падения с высоты. Пациенту была проведена мультиспиральная компьютерная томография на 640-спиральном компьютерном томографе Toshiba Aquilion ONE. По данным МСКТ у пациента определялся перелом нижней стенки орбиты с локализацией дефекта в центрально-латеральном отделе (фиг. 6 - МСКТ, корональная плоскость (А, Б), исследование через 48 часов после получения травмы. Изолированный перелом нижней стенки правой орбиты с локализацией дефекта в латеральном отделе орбиты. Различия значений высоты верхних частей перпендикуляров здоровой и травмированной сторон составляло 1,2 мм через 48 часов после травмы (фиг. 7 - МСКТ, сагиттальная плоскость, исследование через 48 часов после получения травмы. Измерение положения глазного яблока в здоровой (А) и травмированной (Б) орбите, различия верхнего и нижнего расстояний составляет 1,2 мм и 0,6 мм соответственно). Значение разницы высоты верхних частей перпендикуляров здоровой и травмированной орбиты менее 1,2 мм говорит о небольшом риске развития энофтальма у данного пациента.
В рамках динамического наблюдения пациенту проводился МСКТ контроль в течение 2 лет, что позволило выявить положительную динамику, заключающуюся в восстановлении контуров нижней стенки орбиты, правильном положении глазного яблока и отсутствии пролабирования мягкотканных структур орбиты (фиг. 8 - МСКТ, корональная плоскость (А, Б), исследование через 2 года после получения травмы. Определяется восстановление контуров нижней стенки орбиты, правое глазное яблоко расположено правильно, пролабирования мягкотканных структур правой орбиты не выявлено). Различия в положении глазных яблок здоровой и травмированный стороны составляло 1,1 мм через 2 года после травмы (фиг. 9 - МСКТ, сагиттальная плоскость, исследование через 2 года после получения травмы. Измерение положения глазного яблока в здоровой (А) и травмированной (Б) орбите, различия верхнего и нижнего расстояний составляет 1,1 мм и 4,0 мм соответственно).
ПРИМЕР 2. Пациент Б., 28 лет, травма лица получена в результате дорожно-транспортного происшествия. Пациенту была проведена мультиспиральная компьютерная томография на 640-спиральном компьютерном томографе Toshiba Aquilion ONE. По данным МСКТ у пациента определялся изолированный перелом нижней стенки левой орбиты с локализацией дефекта в задне-центральном отделе орбиты (фиг. 10 - МСКТ, корональная плоскость (А, Б), исследование через 24 часа после получения травмы. Изолированный перелом нижней стенки левой орбиты с локализацией дефекта в срединном отделе орбиты). Различия высоты верхних частей перпендикуляров здоровой и травмированной сторон составляло 1,6 мм через 24 часов после травмы (фиг. 11 - МСКТ, сагиттальная плоскость, исследование через 48 часов после получения травмы. Измерение положения глазного яблока в здоровой (А) и травмированной (Б) орбите, различия верхнего и нижнего расстояний составляет 1,6 мм и 3,9 мм соответственно). Значение разницы высоты верхних частей перпендикуляров здоровой и травмированной орбиты более 1,2 мм говорит о риске развития энофтальма у данного пациента. По данным послеоперационной МСКТ, контуры нижней стенки орбиты восстановлены за счет имплантата, пролабирования мягкотканных структур левой орбиты не отмечается (фиг. 12 - МСКТ, корональная плоскость (А, Б), исследование через 10 дней после хирургического лечения. Определяется имплант в области нижней стенки левой орбиты, контуры нижней стенки орбиты восстановлены, и пролабирования мягкотканных структур левой орбиты не отмечается). После хирургического лечения различие значений высоты верхних частей перпендикуляров здоровой и травмированной сторон сократилось до 1,1 мм (фиг. 13 - МСКТ, сагиттальная плоскость, исследование после хирургического лечения. Измерение положения глазного яблока в здоровой (А) и травмированной (Б) орбите, различия верхнего и нижнего расстояний составляет 1,1 мм и 0,6 мм соответственно).
название | год | авторы | номер документа |
---|---|---|---|
Способ определения состояния мягких тканей орбиты у пациентов с травмами средней зоны лица | 2018 |
|
RU2661006C1 |
Способ выбора тактики лечения пациентов с дефектом нижней стенки орбиты | 2018 |
|
RU2661004C1 |
Способ оценки эффективности реконструктивной операции на орбите | 2016 |
|
RU2638623C1 |
Способ определения избыточного объема мягких тканей орбиты при планировании операций коррекции экзофтальма | 2017 |
|
RU2642543C1 |
Способ функциональной мультиспиральной компьютерно-томографической диагностики дисфункции височно-нижнечелюстных суставов | 2016 |
|
RU2637830C1 |
Способ выбора хирургического лечения хронической нестабильности плечевого сустава | 2022 |
|
RU2812720C1 |
Электрод для электростимуляции зрительного нерва и зрительных путей и контроля физиологических параметров орбитальных структур глаза, способ его использования и устройство для электростимуляции | 2016 |
|
RU2620154C1 |
Способ компьютерной экзофтальмометрии с проведением измерений относительно костной части слухового прохода | 2023 |
|
RU2821322C1 |
Способ мультиспиральной компьютерно-томографической диагностики заболеваний голеностопного сустава и стопы | 2016 |
|
RU2659028C2 |
Способ функциональной мультиспиральной компьютерно-томографической диагностики нестабильности поясничного отдела позвоночника | 2016 |
|
RU2672931C2 |
Изобретение относится к медицине, лучевой диагностике, офтальмологии, пластической и челюстно-лицевой хирургии, может быть использовано для оценки положения глазных яблок у пациентов с травмами средней зоны лица. Проводят мультиспиральную компьютерную томографию (МСКТ) в положении пациента лежа на спине с позиционированием его взора прямо и центрально на цветовую метку, расположенную на гентри компьютерного томографа. Полученное изображение выравнивают в сагиттальной плоскости по ходу зрительного нерва в аксиальной плоскости. Обводят на изображении границы глазного яблока в сагиттальной плоскости с помощью инструмента «Эллипс», в мягкотканном режиме. Проводят линию от костного ориентира - нижняя поверхность малого крыла клиновидной кости – к заднему полюсу глазного яблока. Проводят перпендикуляр к проведенной линии по заднему полюсу глазного яблока. Измеряют высоту верхней и нижней частей перпендикуляра, где высота верхней его части является расстоянием от заднего полюса глазного яблока до верхней границы орбиты, а высота нижней части перпендикуляра - от заднего полюса глазного яблока до нижней границы орбиты. Сравнивают полученные результаты для правого и левого глазных яблок, оценивая их положение с учетом положения заднего полюса глазного яблока. Способ обеспечивает точность оценки положения глазных яблок у пациентов с травмами орбиты даже при минимальном смещении глазного яблока. 5 з.п. ф-лы, 13 ил., 2 пр.
1. Способ оценки положения глазных яблок у пациентов с травмами средней зоны лица, включающий
проведение мультиспиральной компьютерной томографии, исследование проводится в положении пациента лежа на спине с позиционированием взора пациента прямо и центрально на цветовую метку, расположенную на гентри компьютерного томографа,
полученное изображение выравнивают в сагиттальной плоскости по ходу зрительного нерва в аксиальной плоскости,
обводят на изображении границы глазного яблока в сагиттальной плоскости с помощью инструмента «Эллипс», в мягкотканном режиме,
проводят линию от костного ориентира - нижняя поверхность малого крыла клиновидной кости, к заднему полюсу глазного яблока,
проводят перпендикуляр к проведенной линии по заднему полюсу глазного яблока,
измеряют высоту верхней и нижней частей перпендикуляра, где высота верхней его части является расстоянием от заднего полюса глазного яблока до верхней границы орбиты, а высота нижней части перпендикуляра - от заднего полюса глазного яблока до нижней границы орбиты,
сравнивают полученные результаты для правого и левого глазных яблок, оценивая их положение с учетом положения заднего полюса глазного яблока.
2. Способ по п. 1, отличающийся тем, что если значения высот верхних частей перпендикуляров для правого и левого глазных яблок совпадают, то считают положения глазных яблок нормальными.
3. Способ по п. 1, отличающийся тем, что если значение разницы высот верхних частей перпендикуляров здоровой и травмированной орбиты менее 1,2 мм, делают вывод о минимальном смещении глазного яблока книзу.
4. Способ по п. 1, отличающийся тем, что если значение разницы высот верхних частей перпендикуляров здоровой и травмированной орбиты 1,2 мм и более, делают вывод о наличии энофтальма.
5. Способ по п. 1, отличающийся тем, что по разнице высот нижних частей перпендикуляров судят о выраженности костно-травматических изменений нижней стенки орбиты и глубины смещения костных отломков в верхнечелюстной синус, и чем больше разница высот нижних частей перпендикуляров здоровой и травмированной орбит, тем больше отломки нижней стенки орбиты смещены в верхнечелюстной синус при травме орбиты.
6. Способ по п. 1, отличающийся тем, что если значения высот верхних и нижних частей перпендикуляров соответственно здоровой и травмированной орбиты после операции равны, то делают вывод об эффективности восстановления нижней стенки орбиты и нормализации положения глазного яблока.
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ СМЕЩЕНИЯ ГЛАЗНОГО ЯБЛОКА | 2004 |
|
RU2275842C2 |
Способ оценки эффективности реконструктивной операции на орбите | 2016 |
|
RU2638623C1 |
Способ определения избыточного объема мягких тканей орбиты при планировании операций коррекции экзофтальма | 2017 |
|
RU2642543C1 |
Способ измерения выстояния передних границ глазных яблок, опорно-двигательной культи и глазного косметического протеза | 2016 |
|
RU2621124C1 |
US 2016128561 A1, 12.05.2016 | |||
Николаенко В.П | |||
и др | |||
Эпидемиология и классификация орбитальных переломов | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Клиника и диагностика переломов нижней стенки орбиты// Офтальмологические ведомости, 2009, т.II, 2, с.56-70 | |||
Левченко О.В | |||
и др | |||
Рентгеновская комп | |||
томография для оценки эффективности хирургической реконструкции посттравматических дефектов и деформаций глазницы// Нейрохирургия, 2014, 1, с | |||
Солесос | 1922 |
|
SU29A1 |
Kunz C | |||
et al | |||
Приспособление для автоматической односторонней разгрузки железнодорожных платформ | 1921 |
|
SU48A1 |
Br J Oral Maxillofac Surg | |||
Многоступенчатая активно-реактивная турбина | 1924 |
|
SU2013A1 |
реф. |
Авторы
Даты
2018-07-19—Публикация
2018-03-21—Подача