СПОСОБ МОРСКОЙ ВЫСОКОТОЧНОЙ МАГНИТНОЙ СЪЕМКИ Российский патент 2018 года по МПК G01V3/00 

Описание патента на изобретение RU2665355C2

Изобретение относится к области геологического картирования в акваториях и поисков месторождений полезных ископаемых геофизическими методами, в частности поискам россыпных месторождений.

Изобретение наиболее эффективно может быть использовано при поисках месторождений на шельфе.

Россыпные залежи полезных ископаемых, кроме собственно полезного компонента (например, золота, олова, алмазов и др.), содержат в значительных количествах сопровождающие их тяжелые магнитные минералы [1].

Однако существующие в настоящее время высокоточные магнитные съемки [2] характеризуются высокой (погрешность до 5 нТл), но недостаточно высокой, точностью для решения конкретных задач при поисках россыпных и других месторождений полезных ископаемых. Например, с погрешностью до 1-2 нТл.

Основной помехой при проведении магнитных съемок являются вариации геомагнитного поля особенно интенсивные в высоких широтах, где они могут достигать десятки и сотни нТл. Для их оценки используются магнитовариационные станции (МВС), которые устанавливаются на берегу и даже в акватории и по их записям магнитного поля во время съемок (t) учитывают полученные вариации δT(t) в измеренных на рядовых (РМ) и секущих (СМ) маршрутах. Этот способ может служить прототипом представленного изобретения.

Однако вариации в точках стоянок МВС и на РМ и СМ в одно и тоже время могут значимо отличаться из-за аномальных вариаций (береговой эффект и т.п.), то есть введение их в измерения на маршрутах может привести к большим ошибкам съемки.

Для учета аномальных вариаций, в т.ч. для учета всех видов вариаций создан косвенный способ учета вариаций [3]. Этот способ также может служить прототипом заявленного изобретения.

Однако для него требуется большая плотность секущих маршрутов, что не всегда обеспечивает точности съемки. Для гидромагнитных съемок требуемые для поиска россыпей точности достигнуты быть не могут.

Известно также, что для повышения точности морских магнитных съемок используется градиентометрический способ съемки, содержащий два модульных датчика магнитного поля, выполняющих синхронное измерение магнитного поля двумя разнесенными на расстояние Δх: ближним к носителю Т1 и дальним Т2 датчиками [2].

Измерение градиентов магнитного поля при гидромагнитной съемке выполняется двумя разнесенными датчиками синхронно, что приводит к отсутствию в получаемой разности ΔТ=(Т12) вариаций геомагнитного поля. Если учесть, что скорость носителя (судна) не велика, а протяженность рабочих маршрутов значительна, то становится очевидным, сколь важна проблема учета вариаций, особенно в высоких широтах, где амплитуда вариаций может изменяться десятками и сотнями нТл в сутки. Полное отсутствие вариаций в измеряемой величине градиента поля ΔT несомненно является достоинством метода градиентометрии. Проинтегрировав измеренное поле градиентов ΔT, получим искомое не искаженное вариациями поле Т. Этот метод тоже мог бы служить прототипом, если бы не проблема с интегрированием градиентов поля, которые вычисляются на большом интервале Δх, который смещается на одну точку измерения. Таким образом, благодаря большому интервалу Δх обеспечивается значимый градиент для измерения сильного сигнала на фоне помех. Однако при этом в большом интервале Δх теряется тонкая структура поля и соответственно происходит потеря слабых аномалий, которые несут максимальную информацию о верхней части исследуемого разреза.

Градиенты поля ΔT измеряются двумя разнесенными на постоянной базе (Δх) датчиками. Реальная величина базы Δх - порядка 100 м. Таким образом, в процессе измерении получим не истинную величину градиента а его приближенное значение, осредненное на базе Δх, т.е. Следовательно, интегрируя ΔT по х, а точнее суммируя вдоль х, мы получаем некоторое осредненное представление о поле Т.

В аномалиях поля T=∑ΔT отсутствуют реально существующие аномалии Т, имеющих ширину, соизмеримую с Δх, а так же слабые малоградиентные аномалии более высокого порядка на фоне крупных градиентных аномалий Т. Таким образом, в аномалиях T отсутствует тонкая структура поля, которая несет в себе информацию о структурных и литологических особенностях геологического строения исследуемой площади. К примеру, проявление россыпей в магнитном поле. Уменьшение базы Δх приводит к ухудшению отношения сигнал/шум, особенно в поле низкоградиентных слабо выраженных аномалий, тогда применение градиентометрии теряет смысл.

Уровень шумов при градиентометрических измерениях связан с "рысканием" гондол с датчиками на длинном кабеле, изменением величины девиации носителя на ближний и удаленный датчик, нарушением базы Δх и прямолинейности маршрута. При интегрировании градиентов эти помехи создают в Т новый вид шумов, с которыми необходимо бороться.

Кроме того, предложенный способ предполагает, что для суммирования ΔT (интегрирования) необходимо знать начальное значение Т0, которое может быть получено в результате увязки РМ и СМ [3] с участием дополнительно выполненными секущими маршрутами (ДСМ). В точках пересечения ДСМ с началом и концом РМ и СМ будут получены нулевые (для интегрирования) значения Т0.

По значениям Т0 на каждом маршруте, и приведенными к расстоянию между ближайшими точками градиентами поля, измеренные на расстоянии Δх, произведем суммирование градиентов

где i - число точек на профиле; Т0 - поле в начальной точке интегрирования после предварительной увязки РМ, СМ и ДСМ по второму более удаленному от носителя датчику. Затем, из этого поля вычитается Tj и получаем оценку вариаций ΔδT(t).

В связи с тем, что данные градиентометрии содержат ошибки, то в разности ΔδT(t) может содержаться некоторый тренд, который необходимо снять в виде линейного тренда или выше порядков пока не совпадут поля в начальной и конечной точке пересечения с ДСМ с конкретным маршрутом и/или даже в промежуточных пересечениях РМ и СМ. Полученный тренд вычитается из ΔδТ и он не участвует в дальнейшей увязке.

Из T2=T2(t) вычтем увязанные выше РМ, СМ и ДСМ и отождествляем полученную разность с вариациями ΔδT(t) на каждом из маршрутов, которые можно использовать в качестве нулевого приближения для повторной увязки [3], т.е. увязать РМ и СМ с учетом ДСМ по сумме вариаций, полученным в том числе по градиентометрии в промежуточных точках между ДСМ на РМ и СМ.

После второй увязки полученные поправки учитываются в измеренных на маршруте полях, в том числе между точками пересечения РМ и СМ, ДСМ. Этому способствует градиентометрическая съемка.

Таким образом, процесс оценки вариаций δT при проведении морской высокоточной магнитной съемки с высокой точностью выглядит следующим образом:

1) устанавливается второй датчик для измерения градиентов магнитного поля;

2) производится увязка магнитного поля на РМ и СМ с учетом ДСМ (выполняемого на концах РМ и СМ маршрутов) для получения увязанного поля Т0 в начальных точках интегрирования градиентов поля;

3) из суммы градиентов, расположенных между первой и последней точками интегрирования на профиле вычитается линейный тренд при условии, что отклонения от тренда в первой и последней точках отличаются от увязанных значений исходного поля Т0 и не превышают заданной ошибки (например, погрешность измерения или 1/3 ожидаемой точности съемки) при исключении тренда (к примеру, за счет девиации) можно использовать увязанные поля в точках пересечения РМ и СМ на исследуемом профиле. В этом случае тренд (по соответствующим критериям [4]) может оцениваться в виде полиномов более высокого порядка;

4) отклонения от тренда на каждом маршруте вводятся в исходное увязанное поле (п. 2) с первой по последнюю точку;

5) из исходного неувязанного поля вычитается полученное на первой итерации поле, а полученная разность используется в качестве нулевого приближения вариаций при повторной (второй итерации) увязки исходного поля;

6) к результатам второй увязки исходного поля с нулевым приближением для вариаций добавляется интегральная вариация, то есть полученная за счет градиентометрии на каждом из профилей и процесс увязки может быть закончен, если невязка в точках пересечения всех РМ и СМ удовлетворяет заданной погрешности съемки, или продолжен до достижения этой точности. Всего может быть 3-4 итерации.

Технический результат: повышение точности гидромагнитной съемки, что приводит к повышению эффективности при поисках россыпных и других твердых полезных ископаемых по сопутствующим магнитным минералам и поисках месторождений углеводородов по магнитным аномалиям-индикаторам залежей углеводородов.

ЛИТЕРАТУРА

1. Смирнов А.Н., Паламарчук В.К., Глинская Н.В., Бурдакова Е.В., Мищенко О.Н., Попова Е.С. Методические аспекты поисков россыпных месторождений на шельфе арктических и дальневосточных морей с помощью магнитоакустического метода // Арктика. Экология и Экономика, 2015. №1(17) С. 47-51.

2. Инструкция по магниторазведке. - Л.: «Недра», 1981.

3. В.К. Паламарчук. Учет вариаций геомагнитного поля и увязка наблюдений при высокоточных аэромагнитных съемках. Новосибирск, Изд-во «Наука» Сибирское отделение: Геология и геофизика, №10, 1983, с. 107-114.

4. В.К. Паламарчук. Опыт разделения аномалии методом тренда, Новосибирск, Изд-во «Наука» Сибирское отделение: Геология и геофизика, №4, 1972.

Похожие патенты RU2665355C2

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ СТАЦИОНАРНОГО ГЕОМАГНИТНОГО ПОЛЯ ПРИ ПРОВЕДЕНИИ МОРСКОЙ МАГНИТНОЙ СЪЕМКИ 2007
  • Ставров Константин Георгиевич
  • Добротворский Александр Николаевич
  • Опарин Александр Борисович
  • Чернявец Владимир Васильевич
RU2331090C1
СПОСОБ ОПРЕДЕЛЕНИЯ СТАЦИОНАРНОГО ГЕОМАГНИТНОГО ПОЛЯ ПРИ ПРОВЕДЕНИИ МОРСКОЙ МАГНИТНОЙ СЪЕМКИ 2010
  • Курсин Сергей Борисович
  • Бродский Павел Григорьевич
  • Добротворский Александр Николаевич
  • Ставров Константин Георгиевич
  • Леньков Валерий Павлович
  • Жуков Юрий Николаевич
  • Ленькова Людмила Александровна
  • Чернявец Владимир Васильевич
  • Румянцев Юрий Владимирович
RU2433429C2
СПОСОБ ОПРЕДЕЛЕНИЯ СТАЦИОНАРНОГО ГЕОМАГНИТНОГО ПОЛЯ ПРИ ПРОВЕДЕНИИ МОРСКОЙ МАГНИТНОЙ СЪЕМКИ 2010
  • Алексеев Сергей Петрович
  • Курсин Сергей Борисович
  • Добротворский Александр Николаевич
  • Бродский Павел Григорьевич
  • Ставров Константин Георгиевич
  • Леньков Валерий Павлович
  • Чернявец Владимир Васильевич
  • Жуков Юрий Николаевич
  • Румянцев Юрий Владимирович
RU2433427C1
СПОСОБ УЧЕТА ВАРИАЦИЙ ГЕОМАГНИТНОГО ПОЛЯ ПО ДОПОЛНИТЕЛЬНЫМ СЕКУЩИМ МАРШРУТАМ ПРИ ВЫПОЛНЕНИИ МАГНИТНЫХ СЪЕМОК НА АКВАТОРИЯХ 2011
  • Глинская Надежда Викторовна
  • Мищенко Оксана Николаевна
  • Паламарчук Василий Климентьевич
  • Бурдакова Елена Владиславовна
RU2539097C2
Способ поисков месторождений углеводородов на шельфе 2016
  • Паламарчук Василий Климентьевич
  • Глинская Надежда Викторовна
  • Мищенко Оксана Николаевна
  • Бурдакова Елена Владиславовна
  • Петров Вадим Викторович
  • Субботин Константин Петрович
RU2657366C2
Устройство для измерения вариаций магнитного поля Земли в движении 1982
  • Матвеев Михаил Иванович
  • Штеренгарц Ефим Мойшевич
  • Загурский Александр Степанович
SU1124240A1
СПОСОБ ИНДУКТИВНОЙ АЭРОЭЛЕКТРОРАЗВЕДКИ НА ШЕЛЬФЕ ПО ВАРИАЦИЯМ ГЕОМАГНИТНОГО ПОЛЯ 2011
  • Паламарчук Василий Климентьевич
  • Бурдакова Елена Владиславовна
  • Глинская Надежда Викторовна
  • Мищенко Оксана Николаевна
  • Прялухина Любовь Александровна
  • Тимичева Виктория Михайловна
RU2497156C2
ОБРАБОТКА ДАННЫХ ГРАВИМЕТРИЧЕСКОЙ СЪЕМКИ 2008
  • Барнс Гари
RU2486549C2
Градиентометрический способ магнитной съемки и устройство для его осуществления 2018
  • Гузевич Святослав Николаевич
RU2686855C1
СПОСОБ ОТЛАДКИ БОРТОВОГО ГРАВИТАЦИОННОГО ГРАДИЕНТОМЕТРА 1989
  • Васин М.Г.
  • Сорока А.И.
SU1823661A1

Реферат патента 2018 года СПОСОБ МОРСКОЙ ВЫСОКОТОЧНОЙ МАГНИТНОЙ СЪЕМКИ

Изобретение относится к области геологического картирования в акваториях и поисков месторождений полезных ископаемых геофизическими методами, в частности поискам россыпных месторождений. В способе учета вариаций геомагнитного поля при проведении морских магнитных съемок с высокой точностью при помощи градиентометрической магнитной съемки, результаты которой после интегрирования (суммирования градиентов) не используются в качестве изменения магнитного поля на профиле, а лишь служат для вычисления наблюденных на профиле вариаций, используемых в качестве нулевого приближения в косвенном способе учета вариаций, что в свою очередь позволяет достигнуть очень высокую точность съемки модуля магнитного поля Т, так как не использует интегральные графики, в которых из-за сглаживания наблюденного поля дифференциальной базой Δx искажается тонкая структура поля Т, а уменьшение базы (расстояние между двумя магнитометрами) Δx приводит к большой погрешности при измерении слабых градиентов. Поэтому в градиентометрическом способе не предусматривается возможность использования полученного через градиенты интегрального поля при изучении тонкой структуры магнитного поля. При этом вариации могут быть вычислены и использованы в качестве нулевого приближения в косвенном способе учета вариаций.

Формула изобретения RU 2 665 355 C2

Способ высокоточной гидромагнитной съемки, содержащий магнитометр на длинном кабеле и высокоточное спутниковое координирование по (x,y,h), выполняющие гидромагнитную съемку по координатам и во времени t с морских подвижных носителей, по сети рядовых (РМ) и плановых секущих (СМ) маршрутов, отличающийся тем, что устанавливается второй магнитометр, образующий с первым два модульных датчика магнитометра-градиентометра, выполняющих синхронное измерение магнитного поля Земли двумя разнесенными на расстояние Δх ближним T1(t) и дальним T2(t) датчиками, по концам РМ и СМ проходят дополнительные секущие маршруты (ДСМ), производят итерационную увязку поля на РМ и СМ, включая ДСМ, находят нулевое приближение поля для интегрирования градиентов начиная с точек пересечения РМ и СМ с ДСМ, вычисляют градиент ΔT12(t)=T1(t)-T2(t), приводят разность ΔT12(t) к расстоянию между двумя ближайшими точками измерения первым и вторым датчиками (Δ(t)), суммируют (интегрируют) разность Δ(t) с начала каждого из маршрутов РМ и СМ начиная с увязанного поля Т0 первой точки (пересечение РМ и ДСМ или СМ и ДСМ), вычисляют разницу между увязанным и интегрированным полями, снимают с этой разности линейный тренд до совпадения (на уровне заданной ошибки σ0) значений в первой и последней точках маршрута, вычисляют отклонения от тренда и отождествляют их с нулевым приближением для дополнительных вариаций δT0(t), суммируют δT0(t) с полученными после увязки исходного поля поправками и используют эти вариации (δT1(t)) в качестве нулевого приближения для учета вариаций косвенным способом по исходным данным, после повторной увязки наблюденного поля получим на РМ, СМ и ДСМ с нулевым приближением δT2(t), новое интегрирование начинают с исправленных (увязанных) значений на первых точках пересечения РМ и СМ с ДСМ, устраняют тренд с интегрированных значений, вычисляют разницу между исходными T2(t) и исправленными , используют их в качестве оценки вариаций и производят по ним окончательный учет вариаций, в т.ч. в промежуточных интервалах между точками пересечений РМ и СМ на каждом профиле.

Документы, цитированные в отчете о поиске Патент 2018 года RU2665355C2

Устройство для измерения вариаций магнитного поля Земли в движении 1982
  • Матвеев Михаил Иванович
  • Штеренгарц Ефим Мойшевич
  • Загурский Александр Степанович
SU1124240A1
СПОСОБ УЧЕТА ВАРИАЦИЙ ГЕОМАГНИТНОГО ПОЛЯ ПО ДОПОЛНИТЕЛЬНЫМ СЕКУЩИМ МАРШРУТАМ ПРИ ВЫПОЛНЕНИИ МАГНИТНЫХ СЪЕМОК НА АКВАТОРИЯХ 2011
  • Глинская Надежда Викторовна
  • Мищенко Оксана Николаевна
  • Паламарчук Василий Климентьевич
  • Бурдакова Елена Владиславовна
RU2539097C2
WO 2008033737 A2, 20.03.2008
СПОСОБ ИЗМЕРЕНИЯ СОСТАВЛЯЮЩИХ ВЕКТОРА МАГНИТНОГО ПОЛЯ ЗЕМЛИ С АЭРОНОСИТЕЛЯ 2011
  • Паламарчук Василий Климентьевич
RU2501045C2
US 8229688 B2, 24.07.2012.

RU 2 665 355 C2

Авторы

Паламарчук Василий Климентьевич

Глинская Надежда Викторовна

Мищенко Оксана Николаевна

Бурдакова Елена Владиславовна

Даты

2018-08-29Публикация

2015-12-30Подача