Система подачи криогенного топлива предназначена для энергетических установок наземного базирования и транспортных средств.
Известен способ работы двухтопливного газотурбинного двигателя, работающего на углеводородном и криогенном топливе (заявка РФ №93006021, F02C 9/00, опубликована: 30.04.1995), заключающийся в том, что при работе на углеводородном топливе в камеру сгорания через теплообменник подают и криогенное топливо в количестве, обеспечивающем охлаждение стенок теплообменника до температуры ниже допустимой температуры для конструкции теплообменников. Криогенное топливо также подают через теплообменник на режимах выше малого газа, а расход криогенного топлива через теплообменник увеличивают пропорционально увеличению температуры газов за турбиной.
Недостаток способа заключается в том, что при работе газотурбинного двигателя обмерзание льдом наружной поверхности теплообменника достигает 40% поверхности в зависимости от режима работы, что снижает эффективность теплопередачи, а значит и эффективность энергетической установки.
Известен ракетный двигатель (патент РФ №2125176, F02K 9/44, опубликован: 20.01.1999) содержит трубопровод, клапан, газодинамический дроссель, теплообменник, блок регулирования мощности, сопло. При открытии клапана газ поступает к дросселю, в котором его давление снижается и стабилизируется на требуемом уровне, в теплообменнике газ нагревается и выбрасывается через сопло, создавая реактивную тягу. При этом обеспечивается увеличение точности регулирования тяги, что необходимо для решения задач высокоточного управления положением космического аппарата.
Недостаток ракетного двигателя в том, что при использовании в качестве криогенного топлива углеводородного газа или водорода, при их сгорании образуется водяной пар, который конденсируется и замерзает на наружной поверхности теплообменника, что снижает эффективность работы, как самого теплообменника, так и двигателя в целом.
Известна система подачи криогенного топлива в камеру сгорания энергетической установки (авт. св. СССР №1795139, F02K 9/44, опубликовано 1991), содержащую криогенную емкость, соединенную через насос, теплообменник газификатор и отсечной клапан с форсунками камеры сгорания газотурбинного двигателя.
Недостаток этой системы подачи криогенного топлива заключается в том, что наружное обмерзание льдом каналов теплообменника газификатора со стороны входа криогенного топлива достигает 40% от теплопередающей площади наружной поверхности каналов на низких режимах работы энергетической установки и до 10% на максимальных режимах работы энергетической установки.
Задачи изобретения: повышение эффективности работы энергетической установки за счет улучшения теплопередачи в теплообменнике парогенераторе криогенного топлива путем уменьшения зоны внешнего обледенения каналов теплообменника парогенератора, повышение надежности работы газовой турбины энергетической установки за счет снижения температуры газов в камере сгорания путем отбора теплоты к поступающей холодной газовой фазе криогенного топлива, а также снижение гидравлического сопротивления первого теплообменника парогенератора со стороны горячих выхлопных газов путем уменьшения объема льда, намерзающего на внешней поверхности каналов теплообменника парогенератора.
Поставленные задачи в системе подачи криогенного топлива содержащей криогенную емкость, соединенную последовательно через расходный клапан, топливный насос и первый регулятор расхода с входом первого теплообменника парогенератора, состоящего из входного коллектора, соединенного через параллельные каналы с выходным коллектором, выход которого соединен через отсечной клапан с форсунками камеры сгорания, при этом подвод внешней теплоты к каналам первого теплообменника парогенератора осуществлен от горячих выхлопных газов энергетической установки решаются тем, что выход топливного насоса через второй регулятор расхода соединен с холодным входом второго теплообменника парогенератора, холодный выход которого соединен с первым входом смесителя, при этом выход криогенного топлива из первого теплообменника парогенератора соединен с горячим входом второго теплообменника парогенератора, горячий выход которого соединен со вторым входом смесителя, а его выход соединен с входом в отсечной клапан и тем, что первый и второй регуляторы расхода криогенного топлива соединены с блоком управления энергетической установки и тем, что на минимальном режиме работы энергетической установки первый регулятор расхода криогенного топлива открыт не более чем на 70%, а второй регулятор расхода криогенного топлива открыт более чем на 30% и тем, что на максимальном режиме работы энергетической установки первый регулятор расхода криогенного топлива открыт более чем на 90%, а второй регулятор расхода криогенного топлива открыт не более чем на 10% и тем, что на промежуточных между минимальным и максимальным режимами работы энергетической установки первый регулятор расхода криогенного топлива открыт в соответствии с режимом в диапазоне от 60 до 100%, а второй регулятор расхода криогенного топлива открыт соответственно в диапазоне от 40 до 0% и тем, что со стороны входа криогенного топлива на наружной поверхности канала первого теплообменника установлен датчик температуры, соединенный с блоком управления энергетической установки, а также тем, что первым и вторым регуляторами расхода криогенного топлива управляют в зависимости от температуры стенки со стороны входа криогенного топлива на наружной поверхности канала первого теплообменника парогенератора, при этом если температура ниже 273,15 К, то первый регулятор расхода прикрывают, а второй регулятор расхода открывают до тех пор, пока температура не превысит вышеназванное значение.
В известных технических решениях признаков сходных с признаками, отличающими заявляемое решение от прототипа, не обнаружено, следовательно, это решение обладает существенными отличиями. Приведенная совокупность признаков в сравнении с известным уровнем техники позволяет сделать вывод о соответствии заявляемого технического решения условию «новизна». В то же время, заявляемое техническое решение применимо в промышленности, в частности в энергетическом машиностроении и криогенных системах и может быть использовано в системах подачи криогенного топлива в наземную или транспортную энергетическую установку, поэтому оно соответствует условию «промышленная применимость».
Изобретение поясняется следующими схемами.
На фиг. 1 представлена схема системы подачи криогенного топлива в энергетическую установку, содержащую первый и второй регуляторы расхода соответственно соединенные с входами в первый и второй теплообменники парогенераторы, выходы которых соединены со смесителем.
На фиг. 2 представлена схема системы подачи криогенного топлива в энергетическую установку, содержащую соединение блока управления энергетической установки с первым и вторым регуляторами расходов.
На фиг. 3 представлена схема системы подачи криогенного топлива в энергетическую установку, содержащую датчик температуры на наружной поверхности первого теплообменника парогенератора со стороны входа жидкой фазы криогенного топлива, соединенного с блоком управления энергетической установки.
Система по п. 1 (фиг. 1) формулы содержит криогенную емкость 1, последовательно соединенную через расходный клапан 2, топливный насос 3, первый регулятор расхода 4, входной коллектор 5, парогенерирующие каналы 6, подвод внешней теплоты Q, к которым осуществлен от горячих выхлопных газов энергетической установки, выходной коллектор 7 первого теплообменника парогенератора, горячий вход 8 второго теплообменника парогенератора 9, горячий выход 10 второго теплообменника парогенератора 9, первый вход смесителя 11, отсечной клапан 12 с форсунками 13 камеры сгорания энергетической установки, при этом выход топливного насоса 3 также соединен последовательно через второй регулятор расхода 14, холодный вход 15 второго теплообменника парогенератора 9, холодный выход 16 второго теплообменника парогенератора 9, со вторым входом смесителя 11.
Система по п. 2 или п. 3 или п. 4 или п. 5 (фиг. 2) формулы дополнительно содержит соединение первого регулятора расхода 4 и второго регулятора расхода 14 с блоком 17 управления энергетической установки.
Система по п. 6 или по способу п. 7 (фиг. 3) формулы дополнительно содержит со стороны входа криогенного топлива на наружной поверхности канала 6 первого теплообменника парогенератора датчик температуры 18, соединенный с блоком 17 управления энергетической установки.
Система по п. 1 формулы (фиг. 1) работает следующим образом. Жидкая фаза криогенного топлива поступает из криогенной емкости 1 последовательно через расходный клапан 2, топливный насос 3, первый регулятор расхода 4, входной коллектор 5, парогенерирующие каналы 6, с подводом внешней теплоты Q к которым осуществлен от горячих выхлопных газов энергетической установки, выходной коллектор 7 первого теплообменника парогенератора, горячий вход 8 второго теплообменника парогенератора 9, горячий выход 10 второго теплообменника парогенератора 9, первый вход смесителя 11, отсечной клапан 12 в форсунки 13 камеры сгорания энергетической установки, при этом часть жидкого криогенного топлива поступает с выхода топливного насоса 3 через второй регулятор расхода 14, холодный вход 15 второго теплообменника парогенератора 9, холодный выход 16 второго теплообменника парогенератора 9, во второй вход смесителя 11. Например, при использовании в качестве криогенного топлива жидкого водорода, в парогенерирующих каналах 6 первого теплообменника парогенератора он нагревается от 20 К до 373 К и поступает в горячий вход 8 второго теплообменника парогенератора 9, за счет теплоты которого вторая часть жидкой фазы криогенного топлива, поступающего на холодный вход 15 второго теплообменника парогенератора 9, испаряется и через холодный выход 16 поступает на второй вход смесителя 11. После смешения газовой фазы в смесителе 11 температура топлива значительно ниже температуры на выходе из первого теплообменника парогенератора. Холодное газообразное криогенное топливо поступает в форсунки 13 камеры сгорания энергетической установки, что снижает температуру газов на выходе из камеры сгорания, а значит и повышает надежность газовой турбины энергетической установки. При этом снижение расхода жидкой фазы криогенного топлива в парогенерирующие каналы 6 первого теплообменника парогенератора снижает площадь наружного обмерзания начальных участков парогенерирующих каналов 6, что, в свою очередь, повышает эффективность теплопередачи в каналах 6 первого теплообменника парогенератора, а также снижает наружное гидравлическое сопротивление каналов 6, что повышает к.п.д. энергетической установки.
Система по п. 2 формулы (фиг. 2) работает следующим образом. В зависимости от режима работы энергетической установки изменяют расход жидкой фазы криогенного топлива на входе первого, имеющего парогенерирующие каналы 6 и второго 9 теплообменников парогенераторов, при этом при увеличении режима работы энергетической установки расход на входе первого теплообменника парогенератора увеличивают, а на входе второго теплообменника парогенератора 9 уменьшают. За счет перераспределения жидкой фазы криогенного топлива между первым и вторым 9 теплообменниками парогенераторами снижено наружное обмерзание парогенерирующих каналов 6 на всех режимах работы энергетической установки, а также снижено внешнее гидравлическое сопротивление парогенерирующих каналов 6 первого теплообменника парогенератора.
Система по п. 3 формулы (фиг. 2) работает следующим образом. На минимальном режиме работы энергетической установки первый регулятор 4 расхода жидкой фазы криогенного топлива открыт не более чем на 70%, а второй регулятор расхода 14 криогенного топлива открыт более чем на 30%. За счет перераспределения жидкой фазы криогенного топлива между первым и вторым 9 теплообменниками парогенераторами снижено наружное обмерзание парогенерирующих каналов 6 на всех минимальном режиме работы энергетической установки, а также снижено внешнее гидравлическое сопротивление парогенерирующих каналов 6 первого теплообменника парогенератора.
Система по п. 4 формулы (фиг. 2) работает следующим образом. На максимальном режиме работы энергетической установки первый регулятор 4 расхода жидкой фазы криогенного топлива открыт более чем на 90%, а второй регулятор 14 расхода криогенного топлива открыт не более чем на 10%. За счет перераспределения жидкой фазы криогенного топлива между первым и вторым 9 теплообменниками парогенераторами снижено наружное обмерзание парогенерирующих каналов 6 на максимальном режиме работы энергетической установки, а также снижено внешнее гидравлическое сопротивление парогенерирующих каналов 6 первого теплообменника парогенератора.
Система по п. 5 формулы (фиг. 2) работает следующим образом. На промежуточных между минимальным и максимальным режимами работы энергетической установки первый регулятор 4 расхода жидкой фазы криогенного топлива открыт в соответствии с режимом в диапазоне от 60 до 100%, а второй регулятор расхода 14 криогенного топлива открыт соответственно в диапазоне от 40 до 0%. За счет перераспределения жидкой фазы криогенного топлива между первым и вторым 9 теплообменниками парогенераторами снижено наружное обмерзание парогенерирующих каналов 6 на всех промежуточных режимах работы энергетической установки, а также снижено внешнее гидравлическое сопротивление парогенерирующих каналов 6 первого теплообменника парогенератора.
Система по п. 6 формулы (фиг. 3) работает следующим образом. Со стороны входа жидкой фазы криогенного топлива на наружной поверхности канала 6 первого теплообменника парогенератора с помощью датчика температуры 18, соединенного с блоком управления 17 энергетической установки, измеряют наружную температуру стенки канала 6. По уровню этой температуры изменяют расход жидкой фазы криогенного топлива на входе в первый и второй 9 теплообменники парогенератора. Это позволяет снизить площадь наружного обмерзания каналов 6 первого теплообменника парогенератора, а также снизить внешнее гидравлическое сопротивление каналов 6 первого теплообменника парогенератора.
Система по п. 7 формулы (фиг. 3) работает следующим образом. Первым 4 и вторым 14 регуляторами расхода криогенного топлива управляют в зависимости от температуры стенки со стороны входа криогенного топлива на наружной поверхности канала 6 первого теплообменника, при этом если температура ниже 273,15 К, то первый 4 регулятор расхода прикрывают, а второй 14 регулятор расхода открывают до тех пор, пока температура не превысит вышеназванное значение. Это позволяет снизить площадь наружного обмерзания каналов 6 первого теплообменника парогенератора, а также снизить внешнее гидравлическое сопротивление каналов 6 первого теплообменника парогенератора.
За счет перераспределения теплоты подводимой к криогенному топливу в двух теплообменниках, уменьшено обмерзание наружной поверхности первого теплообменника парогенератора на всех режимах работы энергетической установки. За счет снижения обмерзания каналов первого теплообменника парогенератора, в нем повышена эффективность теплопередачи. За счет снижения габаритов первого теплообменника парогенератора уменьшены гидравлические потери в газодинамическом тракте энергетической установки, что, в свою очередь, повышает ее коэффициент полезного действия. За счет снижения температуры газовой фазы криогенного топлива на входе в камеру сгорания снижена температура выхлопных газов на ее выходе, что, в свою очередь, повысило надежность работы газовой турбины энергетической установки.
Таким образом, изобретением усовершенствована схема системы подачи криогенного топлива в энергетическую установку, в которой изменены и оптимизированы характеристики первого и второго теплообменников парогенераторов, а также распределение потоков криогенного топлива между первым и вторым теплообменниками парогенераторами для снижения обмерзания наружной поверхности первого теплообменника парогенератора, который подогревается выхлопными газами от энергетической установки.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАБОТЫ СИСТЕМЫ ПОДАЧИ КРИОГЕННОГО ПРОДУКТА | 2018 |
|
RU2705347C1 |
СИСТЕМА РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2020 |
|
RU2746082C1 |
ТОПЛИВНАЯ СИСТЕМА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2019 |
|
RU2702454C1 |
СПОСОБ ПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ НА КРИОГЕННОМ ТОПЛИВЕ | 2021 |
|
RU2772515C1 |
ПАРОГЕНЕРАТОР | 2017 |
|
RU2664038C1 |
ТЕПЛООБМЕННИК | 2020 |
|
RU2739661C1 |
ТЕПЛООБМЕННИК ДЛЯ КРИОГЕННЫХ ПРОДУКТОВ | 2020 |
|
RU2751689C1 |
СПОСОБ УТИЛИЗАЦИИ ПАРОВ ТОПЛИВА | 2018 |
|
RU2696426C1 |
СПОСОБ ПОВЫШЕНИЯ УСТОЙЧИВОСТИ ПАРОГЕНЕРАТОРА | 2022 |
|
RU2791365C1 |
СИСТЕМА СЖИЖЕНИЯ ГАЗА | 2020 |
|
RU2746143C1 |
Изобретение относится к энергетике. Система подачи криогенного топлива содержит криогенную емкость, соединенную последовательно через расходный клапан, топливный насос и первый регулятор расхода с входом первого теплообменника парогенератора, состоящего из входного коллектора, соединенного через параллельные каналы с выходным коллектором, выход которого соединен через отсечной клапан с форсунками камеры сгорания, при этом подвод внешней теплоты к каналам первого теплообменника парогенератора осуществлен от горячих выхлопных газов энергетической установки, дополнительно выход топливного насоса через второй регулятор расхода соединен с холодным входом второго теплообменника парогенератора, холодный выход которого соединен с первым входом смесителя, при этом выход криогенного топлива из первого теплообменника парогенератора соединен с горячим входом второго теплообменника парогенератора, горячий выход которого соединен со вторым входом смесителя, а его выход соединен с входом в отсечной клапан. Изобретение позволяет повысить эффективность работы энергетической установки. 6 з.п. ф-лы, 3 ил.
1. Система подачи криогенного топлива, содержащая криогенную емкость, соединенную последовательно через расходный клапан, топливный насос и первый регулятор расхода с входом первого теплообменника парогенератора, состоящего из входного коллектора, соединенного через параллельные каналы с выходным коллектором, выход которого соединен через отсечной клапан с форсунками камеры сгорания, при этом подвод внешней теплоты к каналам первого теплообменника парогенератора осуществлен от горячих выхлопных газов энергетической установки, отличающаяся тем, что, с целью повышения эффективности работы энергетической установки, выход топливного насоса через второй регулятор расхода соединен с холодным входом второго теплообменника парогенератора, холодный выход которого соединен с первым входом смесителя, при этом выход криогенного топлива из первого теплообменника парогенератора соединен с горячим входом второго теплообменника парогенератора, горячий выход которого соединен со вторым входом смесителя, а его выход соединен с входом в отсечной клапан.
2. Система по п. 1, отличающаяся тем, что первый и второй регуляторы расхода криогенного топлива соединены с блоком управления энергетической установки.
3. Система по п. 1 или 2, отличающаяся тем, что на минимальном режиме работы энергетической установки первый регулятор расхода криогенного топлива открыт не более чем на 70%, а второй регулятор расхода криогенного топлива открыт более чем на 30%.
4. Система по п. 1 или 2, отличающаяся тем, что на максимальном режиме работы энергетической установки первый регулятор расхода криогенного топлива открыт более чем на 90%, а второй регулятор расхода криогенного топлива открыт не более чем на 10%.
5. Система по п. 1 или 2, отличающаяся тем, что на промежуточных между минимальным и максимальным режимами работы энергетической установки первый регулятор расхода криогенного топлива открыт в соответствии с режимом в диапазоне от 60 до 100%, а второй регулятор расхода криогенного топлива открыт соответственно в диапазоне от 40 до 0%.
6. Система по любому из пп. 1-5, отличающаяся тем, что со стороны входа криогенного топлива на наружной поверхности канала первого теплообменника парогенератора установлен датчик температуры, соединенный с блоком управления энергетической установки.
7. Система по п. 6, отличающаяся тем, что первым и вторым регуляторами расхода криогенного топлива управляют в зависимости от температуры стенки со стороны входа криогенного топлива на наружной поверхности канала первого теплообменника парогенератора, при этом если температура ниже 273,15 К, то первый регулятор расхода прикрывают, а второй регулятор расхода открывают до тех пор, пока температура не превысит вышеназванное значение.
Система подачи криогенного топлива в камеру сгорания энергетической установки | 1991 |
|
SU1795139A1 |
СИСТЕМА ПОДАЧИ КРИОГЕННОГО ТОПЛИВА ДЛЯ ПИТАНИЯ ДВИГАТЕЛЯ | 2010 |
|
RU2427724C1 |
СТЕНД ДЛЯ ИСПЫТАНИЯ КРИОГЕННЫХ НАСОСОВ | 1986 |
|
SU1501640A1 |
Стенд для испытания насосов | 1986 |
|
SU1349380A1 |
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса | 1924 |
|
SU2015A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
2018-09-24—Публикация
2017-08-30—Подача