Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из корундовых жаростойких бетонов. Технический результат - повышение температуры начала деформации под нагрузкой 0.2 МПа, термической стойкости и водостойкости изделий из корундового жаростойкого бетона.
Известен способ изготовления жаростойких бетонов на основе силикат-натриевых композиций [1].
Недостатком известного способа является использование в качестве связующего - силикат-глыбы (силикат натрия), которая содержит легкоплавкий щелочной компонент Na2O, снижающий температуру начала деформации под нагрузкой 0.2 МПа, термическую стойкость и водостойкость жаростойкого бетона.
Наиболее близким к предлагаемому техническому решению по совокупности признаков (прототип) является состав и способ изготовления корундового жаростойкого бетона, включающего, мас. %: электроплавленный корундовый заполнитель 60-80, тонкомолотый электроплавленный корунд 8-16, натриевую силикат-глыбу с силикатным модулем 2,7-3,0 в виде наноразмерных частиц 2-4, тонкомолотый технический глинозем 4-8, тонкомолотый диатомит 4-6, щелочной алюмосиликат Na2O 11-12 Al2O3 2-6 и воду из расчета В/Т 0,12-0,14 с основными показателями свойств: температура начала деформации под нагрузкой 0.2 МПа - 1540°С; термическая стойкость - 14-17 теплосмен (1300°С - вода) [2].
Недостатком этого состава и способа является то, что состав содержит связующее – силикат-глыбу с силикатным модулем 2,7-3,0 в виде наноразмерных частиц, полученный путем дегидратационного диспергирования гидратированной тонкомолотой до удельной поверхности 2500-3000 см2/г натриевой силикат-глыбы при температуре 200-1000°С, являющегося сложным и требующего больших энергетических затрат, и щелочной алюмосиликат (Na2O 11-12 Al2O3), в которых, соответственно, содержатся большое количество легкоплавкого щелочного компонента Na2O, снижающего температуру начала деформации под нагрузкой 0.2 МПа, термическую стойкость и водостойкость жаростойкого бетона.
Целью изобретения является устранение вышеуказанных недостатков корундового жаростойкого бетона.
Поставленная цель достигается тем, что состав для изготовления корундового жаростойкого бетона, включающий связующее, электроплавленный корундовый заполнитель, тонкомолотый электроплавленный корунд с удельной поверхностью 2500-3000 см2/г: электроплавленный корунд, тонкомолотый технический глинозем, тонкомолотый диатомит, щелочной алюмосиликат Na2O 11-12 Al2O3 и нагретую воду (80-90°), содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6.5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния при их соотношении 1:1,6, перемешивания при 100°С в течение 3,0 ч с выдержкой при указанной температуре не более 0,5 ч, и в качестве указанного щелочного алюмосиликатного компонента содержит природный аморфный кремнезем с содержанием до 20% нанодисперсных частиц, имеющий следующий химический состав в мас. %: SiO2 - 87,00; Al2O3 - 5,00; TiO3 - 0,3; Fe2O3 - 2,25; P2O5 - 0,07; FeO менее 0,25; СаО - 0,72; MgO - 0,50; MnO - 0,02; K2O - 1,03; Na2O - 0,58; SO3 менее 0,10; ППП - 2,26, при следующем соотношении компонентов, мас. %: указанный коллоидный полисиликат натрия 2-4, электроплавленный корундовый заполнитель 60-80, тонкомолотый электроплавленный корунд с удельной поверхностью 2500-3000 см2/г 8-16, тонкомолотый технический глинозем с удельной поверхностью 2500-3000 см2/г 4-6, тонкомолотый диатомит с удельной поверхностью 2500-3000 см2/г 3-5, указанный природный тонкодисперсный кремнезем 3-9, нагретая до 90°С вода из расчета В/Т 0,12-0,14. Также достижение указанного технического результата обеспечивается способом изготовления корундового жаростойкого бетона из указанного выше состава, включающим введение при перемешивании в высокоскоростном смесителе в указанный коллоидный полисиликат натрия тонкомолотых указанных электроплавленного корунда, технического глинозема и диатомита, указанного кремнезема и воды, нагретой до 80-90°С, до получения однородной суспензии, перемешивание полученной суспензии с указанным корундовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы, формование этой массы прессованием при удельном давлении 30 МПа и осуществление твердения в процессе сушки по режиму: подъем температуры от 20 до 90°С - 1,5 ч, выдержка при 85-95°С - 0,5 ч, подъем температуры до 200°С - 1 ч, выдержка 2 ч.
Исходные компоненты, входящие в состав сырьевой смеси для изготовления корундового жаростойкого бетона с повышенной температурой начала деформации под нагрузкой 0.2 МПа, термической стойкостью и водостойкостью изделий, следующие: коллоидный полисиликат натрия с силикатным модулем 6.5; электроплавленный корундовый заполнитель фракции 0,4-0,6 мм; тонкомолотые наполнители с удельной поверхностью 2500-3000 см2/г: электроплавленный корунд, технический глинозем, диатомит; природный аморфный тонкодисперсный кремнезем и вода, нагретая до 90°С.
Коллоидный полисиликат натрия с силикатным модулем 6.5 изготавливали в лабораторных условиях согласно пат. РФ 2124475, путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния при их соотношении 1:1.6, перемешивания при 100°С, в течение 3,0 ч с последующей выдержкой не более 0,5 ч.
Коллоидный полисиликат натрия представляет переходную область составов от жидких стекол к кремнезолям и классифицируются как наноматериалы.
Структурным элементом полисиликата натрия является кремнекислородный тетраэдр, который является основной полимерной составляющей полисиликатов.
Основным отличием полисиликатов натрия от силиката натрия (силикат-глыбы) является их полимерная форма, представляющая кремнеземные частицы размером от 4 до 5 нм. Полимерная форма составляет 60% и более от общего содержания кремнезема, что обеспечивает высокие прочностные свойства образующихся гелевых структур. Эффективность полисиликата в 4 раза выше эффективности силиката натрия и водных его растворов, что позволяет использовать технологические растворы с более низкой концентрацией.
Электроплавленный корунд характеризуется следующими показателями: огнеупорность - 2050°С; коэффициент линейного расширения-8-9 10-6; плотность - 3,80-3,92 г/см3; насыпная плотность - 2,2 г/см3; химически стоек; инертен; по минералогическому составу представлен в основном - α-Al2O3, является устойчивой кристаллической формой оксида алюминия. Химический состав используемого электроплавленного корунда в %: Al2O3 - 98,11-98,79; SiO2 - 0,13-0,15; Fe2O3 - 058-1,01; Na2O - 0,27-0,45.
Природный аморфный тонкодисперсный кремнезем следующего химического состава в мас. %: SiO2 - 87,00; Al2O3 - 5,00; TiO3 - 0,3; Fe2O3 - 2,25; P2O5 - 0,07; FeO<0,25; СаО - 0,72; MgO - 0,50; MnO - 0,02; K2O - 1,03; Na2O - 0,58; SO3<0,10; ППП - 2,26.
По ситовому анализу природный аморфный кремнезем в основном представлен мелкозернистым и дисперсным частицами, остаток на сите, мас. %: 0,8 мм - 0,393; 0,315 мм - 2,889; 0,2 мм - 13,843; 0.04 мм -53,833; 0,008 мм - 1,081, и проход через сито 0,008 мм - 27,91, в том числе до 20% - нанодисперсными частицами.
Для испытания корундового жаростойкого бетона, изготовленного по вышеуказанному составу и способу из различного состава, изготавливали образцы для определения температуры деформации под нагрузкой 0.2 МПа (ГОСТ 20910-90), термостойкости (ГОСТ 20910-90) и водостойкости Кразм (Микульский В.Г. и др. Строительные материалы. - М.: АСВ, 2004.-28 с.). Образцы изготавливали путем прессования при удельном прессовании 30 МПа. Для формования бетона могут быть применены также другие методы и способы, например послойное трамбование, формование путем вибрирования; вибропрессование и др.
Твердение отформованных образцов осуществляли в лабораторном сушильном шкафу по режиму: подъем температуры от 20 до 90°С - 1,5 ч, выдержка при 90±5°С - 0,5 ч, затем подъем температуры до 200°С - 1 ч, выдержка 2 ч для последующего обезвоживания системы, который проходил без заметных усадочных явлений и способствовал ее упрочнению, обеспечивающему достаточную прочность образцов.
Соотношения компонентов по предлагаемому и известному составам представлены в табл. 1, а результаты испытаний известных и предлагаемых составов приведены в табл. 2. Из приведенных в табл. 2 данных следует, что предлагаемые составы имеют более высокие показатели температуры начала деформации под нагрузкой 0.2 МПа, термостойкости и водостойкости, чем известные.
Таким образом, корундовый жаростойкий бетон, полученный по вышеприведенному составу и способу с использованием в качестве связующего коллоидного полисиликата натрия и в качестве указанного щелочного алюмосиликата - природного аморфного тонкодисперсного кремнезема, способствует увеличению силикатного модуля (SiO2/Na2O) связующего, тем самым повышению кремнеземистого составляющего SiO2 и понижению содержания легкоплавкого компонента Na2O в составе смеси, в результате чего температура начала деформации под нагрузкой 0,2 МПа, термостойкость и водостойкость жаростойкого бетона повышаются. Технический результат, обеспечиваемый предложенным изобретением - указанным составом и способом, состоит в повышении указанных термических свойств и водостойкости жаростойкого бетона.
Литература
1. Тотурбиев Б.Д. Строительные материалы на основе силикат-натриевых композиций. - М.: Стройиздат, 1988, 208 с.
2. Состав и способ изготовления корундового жаростойкого бетона. Батырмурзаев Ш.Д. и др. Патент РФ №2397968, Бюл. №24, 27.08.2010 г.
название | год | авторы | номер документа |
---|---|---|---|
Состав и способ изготовления безобжигового цирконового жаростойкого бетона | 2022 |
|
RU2784296C1 |
Состав и способ изготовления шамотного жаростойкого бетона | 2015 |
|
RU2670806C2 |
Состав и способ изготовления динасового жаростойкого бетона | 2015 |
|
RU2672681C2 |
Состав и способ изготовления кварцитового жаростойкого бетона | 2015 |
|
RU2672361C2 |
Состав и способ изготовления магнезитового жаростойкого бетона | 2015 |
|
RU2609267C1 |
Состав для изготовления хромомагнезитового жаростойкого бетона | 2023 |
|
RU2819583C1 |
Состав и способ изготовления хромомагнезитового жаростойкого бетона | 2016 |
|
RU2662820C2 |
СОСТАВ И СПОСОБ ИЗГОТОВЛЕНИЯ КОРУНДОВОГО ЖАРОСТОЙКОГО БЕТОНА | 2009 |
|
RU2397968C1 |
СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКОГО БЕТОНА | 2007 |
|
RU2330825C1 |
СМЕСЬ ДЛЯ ЖАРОСТОЙКОГО БЕТОНА | 2010 |
|
RU2474593C2 |
Изобретение относится к жаростойким бетонам. Состав для изготовления корундового жаростойкого бетона, включающий: связующее, электроплавленный корундовый заполнитель, тонкомолотый электроплавленный корунд, тонкомолотый технический глинозем, тонкомолотый диатомит и нагретую воду, содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6,5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния в соотношении 1:1,6, перемешивания при 100°С в течение 3,0 ч с выдержкой при указанной температуре не более 0,5 ч, и дополнительно - природный аморфный тонкодисперсный кремнезем с содержанием 20% нанодисперсных частиц, имеющий следующий химический состав, мас. %: SiO2 - 87,00; Al2O3 - 5,00; TiO3 - 0,3; Fe2O3 - 2,25; P2O5 - 0,07; FeO менее 0,25; СаО - 0,72; MgO - 0,50; MnO - 0,02; K2O - 1,03; Na2O - 0,58; SO3 менее 0,10; ППП - 2,26, при следующем соотношении компонентов, мас. %: указанный коллоидный полисиликат натрия 2-4, электроплавленный корундовый заполнитель 60-80, тонкомолотый электроплавленный корунд с удельной поверхностью 2500-3000 см2/г 8-16, тонкомолотый технический глинозем с удельной поверхностью 2500-3000 см2/г 4-6, тонкомолотый диатомит с удельной поверхностью 2500-3000 см2/г 3-5, указанный тонкодисперсный кремнезем 3-9, нагретая до 90°С вода из расчета В/Т 0,12-0,14. Способ изготовления корундового жаростойкого бетона из указанного выше состава, включающий введение при перемешивании в высокоскоростном смесителе в указанный коллоидный полисиликат натрия тонкомолотых указанных электроплавленного корунда, технического глинозема, диатомита, указанного кремнезема и воды, нагретой до 80-90°С, до получения однородной суспензии, перемешивание полученной суспензии с указанным корундовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы, формование этой массы прессованием при удельном давлении 30 МПа и осуществление твердения в процессе сушки по режиму: подъем температуры от 20 до 90°С - 1,5 ч, выдержка при 85-95°С - 0,5 ч, подъем температуры до 200°С - 1 ч, выдержка 2 ч. Технический результат – повышение термических свойств и водостойкости бетона. 2 н.п. ф-лы, 2 табл.
1. Состав для изготовления корундового жаростойкого бетона, включающий: связующее, электроплавленный корундовый заполнитель, тонкомолотый электроплавленный корунд, тонкомолотый технический глинозем, тонкомолотый диатомит и нагретую воду, отличающийся тем, что содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6,5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния в соотношении 1:1,6, перемешивания при 100°С в течение 3,0 ч с выдержкой при указанной температуре не более 0,5 ч, и дополнительно - природный аморфный тонкодисперсный кремнезем с содержанием 20% нанодисперсных частиц, имеющий следующий химический состав, мас. %: SiO2 - 87,00; Al2O3 - 5,00; TiO3 0,3; Fe2O3 - 2,25; P2O5 - 0,07; FeO менее 0,25; СаО - 0,72; MgO - 0,50; MnO - 0,02; K2O - 1,03; Na2O - 0,58; SO3 менее 0,10; ППП - 2,26, при следующем соотношении компонентов, мас. %:
2. Способ изготовления корундового жаростойкого бетона из состава по п. 1, включающий введение при перемешивании в высокоскоростном смесителе в указанный коллоидный полисиликат натрия тонкомолотых указанных электроплавленного корунда, технического глинозема, диатомита, указанного кремнезема и воды, нагретой до 80-90°С, до получения однородной суспензии, перемешивание полученной суспензии с указанным корундовым заполнителем в лопастной мешалке принудительного действия до получения однородной массы, формование этой массы прессованием при удельном давлении 30 МПа и осуществление твердения в процессе сушки по режиму: подъем температуры от 20 до 90°С - 1,5 ч, выдержка при 85-95°С - 0,5 ч, подъем температуры до 200°С - 1 ч, выдержка 2 ч.
СОСТАВ И СПОСОБ ИЗГОТОВЛЕНИЯ КОРУНДОВОГО ЖАРОСТОЙКОГО БЕТОНА | 2009 |
|
RU2397968C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИСИЛИКАТОВ НАТРИЯ (ВАРИАНТЫ) | 1997 |
|
RU2124475C1 |
Способ изготовления безобжиговых огнеупоров | 1989 |
|
SU1701693A1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКОГО БЕТОНА | 2008 |
|
RU2374203C1 |
СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКОГО БЕТОНА | 2007 |
|
RU2330825C1 |
WO 00/073238 A1, 07.12.2000 | |||
ГЕРШБЕРГ О.А | |||
Технология бетонных и железобетонных изделий, Москва, Промстройиздат, 1957, с | |||
Прибор для нагревания перетягиваемых бандажей подвижного состава | 1917 |
|
SU15A1 |
Авторы
Даты
2018-10-02—Публикация
2016-12-14—Подача