СПОСОБ НАБЛЮДЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ ИЗ КОСМОСА Российский патент 2018 года по МПК B64G1/10 B64G1/24 

Описание патента на изобретение RU2670081C1

Изобретение относится к космической технике и может быть использовано в процессе применения космических аппаратов, предназначенных для получения информации о наземных объектах.

В настоящее время космические аппараты наблюдения нашли широкое практическое применение. Известен способ наблюдения земной поверхности из космоса, включающий выведение искусственного спутника на кратную геосинхронную орбиту с периодом обращения, обеспечивающим ежесуточный сдвиг трассы на расстояние, равное ширине полосы обзора бортовой аппаратуры (Инженерный справочник по космической технике / Под ред. А.В. Солодова, М.: Воениздат, 1977. - с. 362).

Существенным недостатком данного способа является большая периодичность наблюдения земной поверхности, которая определяется отношением смещения трассы за виток к ширине полосы обзора. Межвитковое смещение трассы для высот орбит 500... 1000 км составляет величину 2630...2920 км. Для спутников с высоким разрешением бортовой аппаратуры ширина полосы обзора составляет величину 600...800 км. В этих условиях достигается периодичность наблюдения земной поверхности от трех до пяти суток. Данные значения периодичности обзора не позволяют проводить оперативный мониторинг районов, в которых имеют место природные аномалии или техногенные аварии. Кроме того, отклонение спутника или бортовой аппаратуры в процессе наблюдения от вертикали приводит к снижению качества получаемой информации.

Для устранения указанных недостатков в ряде способов (например, патент №2118273) предлагается увеличение количества спутников в системе и их определенное баллистическое построение. Однако такие способы приводят к существенному увеличению затрат, поскольку спутники наблюдения имеют очень высокую стоимость.

Наиболее близким к заявленному изобретению следует считать способ наблюдения земной поверхности из космоса (патент №2232110), включающий выведение по меньшей мере одного искусственного спутника на кратную геосинхронную орбиту с периодом обращения, обеспечивающим наблюдение земной поверхности в надир и наблюдение с отклонением бортовой аппаратуры от вертикали по углу крена. Такой способ позволяет улучшить качество части получаемой информации. Однако периодичность наблюдения остается высокой.

Задачей предлагаемого изобретения является снижение периодичности наблюдения заданных районов земной поверхности из космоса и повышение качества получаемой информации.

Указанная задача решается за счет того, что при возникновении необходимости наблюдения заданного района земной поверхности с низкой периодичностью спутник с помощью двигательной установки переводят с кратной геосинхронной орбиты на близкую компланарную квазисинхронную орбиту. При этом прохождение трассы спутника через заданный район на земной поверхности обеспечивают за счет фазирования спутника на кратной геосинхронной орбите или на промежуточной орбите в процессе перелета.

Для квазисинхронной орбиты трасса спутника повторяется приблизительно через сутки, точнее через период вращения Земли вокруг своей оси относительно восходящего узла орбиты. В результате периодичность наблюдения заданного района снижается в 3…5 раз по сравнению с известными способами. Поскольку суточное смещение трассы на квазисинхронной орбите отсутствует, наблюдение интересующих объектов заданного района можно осуществлять в надир, что существенно повышает качество получаемой информации.

После проведения наблюдения заданного района земной поверхности спутник с помощью двигательной установки возвращают на кратную геосинхронную орбиту для обеспечения глобальности наблюдения земной поверхности.

В процессе полета спутника предлагаемый способ используется столько раз, сколько раз возникает необходимость в наблюдении определенного района земной поверхности с низкой периодичностью.

Для обеспечения минимальных энергетических затрат на наблюдение заданного района земной поверхности квазисинхронная орбита должна лежать в плоскости исходной кратной геосинхронной орбиты и располагаться максимально близко к ней. Получим соотношения для определения больших полуосей квазисинхронных орбит, близких к исходной кратной геосинхронной орбите.

Для ближайшей квазисинхронной орбиты, расположенной выше кратной геосинхронной орбиты, должно выполняться условие:

где Т - период вращения Земли вокруг своей оси относительно восходящего узла квазисинхронной орбиты; ТК - период обращения спутника по квазисинхронной орбите; - целая часть числа, полученного в результате деления периода вращения Земли вокруг своей оси относительно восходящего узла кратной геосинхронной орбиты к периоду обращения спутника по кратной геосинхронной орбите.

Отсюда получаем выражение для периода обращения спутника по квазисинхронной орбите:

Период вращения Земли вокруг своей оси относительно восходящего узла квазисинхронной орбиты определяется по формуле:

где ω3 - угловая скорость вращения Земли вокруг своей оси; - угловая скорость прецессии восходящего узла квазисинхронной орбиты.

С учетом выражения (3) формула (2) примет вид:

Выразим период обращения спутника по квазисинхронной орбите через большую полуось орбиты:

где αК - большая полуось квазисинхронной орбиты; μ3 - гравитационный параметр Земли.

Совместное решение уравнений (4) и (5) позволяет получить формулу для определения большой полуоси квазисинхронной орбиты, расположенной выше исходной кратной геосинхронной орбиты и максимально близкой к ней:

В этой формуле период вращения Земли вокруг своей оси относительно восходящего узла кратной геосинхронной орбиты определяется по формуле:

Для ближайшей квазисинхронной орбиты, расположенной ниже исходной кратной геосинхронной орбиты, должно выполняться условие:

Проведя аналогичные математические выкладки, можно получить следующую формулу для определения большой полуоси квазисинхронной орбиты, расположенной ниже исходной кратной геосинхронной орбиты и максимально близкой к ней:

При использовании предлагаемого способа для снижения экономических расходов на наблюдение заданного района земной поверхности необходимо выбирать квазисинхронную орбиту, для которой значение большой полуоси меньше отличается от большой полуоси исходной кратной геосинхронной орбиты.

Проведенные расчеты с использованием формул (6) и (9) показали, что в диапазоне высот кратных геосинхронных орбит от 500 до 1200 км разница больших полуосей таких орбит и ближайших квазисинхронных орбит составляет величину около 70 км. Суммарные импульсные приращения скоростей для перехода с кратных геосинхронных орбит на ближайшие квазисинхронные орбиты составляют величину около 40…50 м/с.Данные затраты невелики и соизмеримы с затратами на компенсацию аэродинамического сопротивления атмосферы. При этом использование предлагаемого способа не требует внесения существенных изменений в конструкцию космических аппаратов.

Таким образом, предлагаемый способ позволяет значительно снизить периодичность наблюдения заданных районов земной поверхности и повысить качество получаемой информации при относительно небольших экономических затратах, связанных с увеличением запаса топлива двигательных установок космических аппаратов. Следовательно, достигается решение технической задачи изобретения.

Похожие патенты RU2670081C1

название год авторы номер документа
Способ формирования группировки космических аппаратов для локального наблюдения заданной области планеты 2017
  • Яковлев Михаил Викторович
  • Сергеев Виктор Евгеньевич
  • Усовик Игорь Вячеславович
RU2671601C1
СПОСОБ НАБЛЮДЕНИЯ ПОВЕРХНОСТИ ПЛАНЕТЫ ИЗ КОСМОСА И КОСМИЧЕСКАЯ СПУТНИКОВАЯ СИСТЕМА ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА 2013
  • Козлов Павел Георгиевич
  • Мошнин Александр Алексеевич
  • Разумный Владимир Юрьевич
  • Разумный Юрий Николаевич
RU2535375C1
СПОСОБ ПРОВЕДЕНИЯ СЪЕМОК ЗЕМНОЙ ПОВЕРХНОСТИ ИЗ КОСМОСА 2001
  • Хусаинов Р.М.
  • Иванов Н.Н.
RU2232110C2
СПОСОБ НАБЛЮДЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ ИЗ КОСМОСА 1995
  • Гусев Ю.Г.
  • Ермаченков А.В.
  • Неволько М.П.
  • Разумный Ю.Н.
  • Силов В.В.
RU2118273C1
СПОСОБ НАБЛЮДЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ ИЗ КОСМОСА 1988
  • Алексеев Э.В.
  • Аншакова В.Д.
  • Бородин И.М.
  • Бырков Б.П.
  • Власов С.А.
  • Ворожейкин В.Н.
  • Григоренко О.С.
  • Дубровинский Я.В.
  • Мантуров А.И.
  • Неволько М.П.
  • Разумный Ю.Н.
  • Силов В.В.
  • Трифонов Ю.В.
  • Усталов Ю.М.
  • Чуткерашвили Г.Д.
RU2076059C1
СИСТЕМА СПУТНИКОВ НАБЛЮДЕНИЯ ПЛАНЕТЫ 2015
  • Улыбышев Юрий Петрович
  • Кичигина Ольга Константиновна
  • Соколов Андрей Васильевич
RU2595240C1
СПОСОБ ОРБИТАЛЬНОГО ПОСТРОЕНИЯ НАВИГАЦИОННОЙ СПУТНИКОВОЙ СИСТЕМЫ 2004
  • Урличич Юрий Матэвич
  • Поповкин Владимир Александрович
  • Дворкин Вячеслав Владимирович
  • Селиванов Арнольд Сергеевич
  • Фатеев Вячеслав Филиппович
  • Горбулин Владимир Иванович
RU2314232C2
СПУТНИКОВАЯ СИСТЕМА СВЯЗИ И НАБЛЮДЕНИЯ 2011
  • Улыбышев Юрий Петрович
  • Соколов Андрей Васильевич
  • Гунченко Михаил Юрьевич
  • Петров Николай Константинович
  • Вовк Анатолий Васильевич
RU2499750C2
СИСТЕМА СПУТНИКОВ НА ЭЛЛИПТИЧЕСКИХ ОРБИТАХ, ЭМУЛИРУЮЩАЯ ХАРАКТЕРИСТИКИ СИСТЕМЫ СПУТНИКОВ НА ГЕОСТАЦИОНАРНОЙ ОРБИТЕ 2002
  • Витер В.В.
  • Гриценко А.А.
  • Жиров В.А.
  • Липатов А.А.
  • Степанов А.А.
  • Тихонов О.С.
RU2223205C2
СПУТНИКОВАЯ СИСТЕМА НЕПРЕРЫВНОГО ГЛОБАЛЬНОГО ОБЗОРА ОКОЛОЗЕМНОГО КОСМИЧЕСКОГО ПРОСТРАНСТВА 2017
  • Разумный Юрий Николаевич
  • Самусенко Олег Евгеньевич
  • Нгуен Нам Куи
  • Разумный Владимир Юрьевич
  • Купреев Сергей Алексеевич
  • Федяев Константин Сергеевич
RU2705027C2

Реферат патента 2018 года СПОСОБ НАБЛЮДЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ ИЗ КОСМОСА

Изобретение относится к спутниковым системам наблюдения Земли. Способ включает перевод спутника с кратной геосинхронной орбиты на близкую по высоте компланарную квазисинхронную орбиту с малой периодичностью наблюдения заданного района Земли. За счет фазирования на кратной геосинхронной или промежуточной орбитах обеспечивают прохождение трассы спутника через указанный заданный район, по завершении наблюдения которого спутник возвращают на кратную геосинхронную орбиту (с большей периодичностью наблюдения заданного района). Данный способ используется столько раз, сколько требуется наблюдать указанный заданный район Земли. Техническим результатом является уменьшение периодичности наблюдения заданных районов Земли и повышение качества получаемой информации. 2 н.п. ф-лы.

Формула изобретения RU 2 670 081 C1

1. Способ наблюдения земной поверхности из космоса, включающий выведение по меньшей мере одного искусственного спутника на кратную геосинхронную орбиту с периодом обращения, обеспечивающим ежесуточный сдвиг полосы обзора, отличающийся тем, что для наблюдения заданного района земной поверхности с малой периодичностью спутник с помощью двигательной установки переводят с кратной геосинхронной орбиты на компланарную квазисинхронную орбиту, большую полуось которой определяют по формуле:

где μ3 - гравитационный параметр Земли, ω3 - угловая скорость вращения Земли вокруг своей оси, - угловая скорость прецессии восходящего узла квазисинхронной орбиты, - целая часть числа, полученного в результате деления периода вращения Земли вокруг своей оси относительно восходящего узла кратной геосинхронной орбиты, который определяют с использованием угловой скорости прецессии восходящего узла кратной геосинхронной орбиты по формуле:

на период обращения спутника по кратной геосинхронной орбите, при этом за счет фазирования на кратной геосинхронной или промежуточной орбитах обеспечивают прохождение трассы спутника через заданный район на земной поверхности, а после проведения наблюдения заданного района земной поверхности спутник с помощью двигательной установки возвращают на кратную геосинхронную орбиту.

2. Способ наблюдения земной поверхности из космоса, включающий выведение по меньшей мере одного искусственного спутника на кратную геосинхронную орбиту с периодом обращения, обеспечивающим ежесуточный сдвиг полосы обзора, отличающийся тем, что для наблюдения заданного района земной поверхности с малой периодичностью спутник с помощью двигательной установки переводят с кратной геосинхронной орбиты на компланарную квазисинхронную орбиту, большую полуось которой определяют по формуле:

где μ3 - гравитационный параметр Земли, ω3 - угловая скорость вращения Земли вокруг своей оси, - угловая скорость прецессии восходящего узла квазисинхронной орбиты, - целая часть числа, полученного в результате деления периода вращения Земли вокруг своей оси относительно восходящего узла кратной геосинхронной орбиты, который определяют с использованием угловой скорости прецессии восходящего узла кратной геосинхронной орбиты по формуле:

на период обращения спутника по кратной геосинхронной орбите, при этом за счет фазирования на кратной геосинхронной или промежуточной орбитах обеспечивают прохождение трассы спутника через заданный район на земной поверхности, а после проведения наблюдения заданного района земной поверхности спутник с помощью двигательной установки возвращают на кратную геосинхронную орбиту.

Документы, цитированные в отчете о поиске Патент 2018 года RU2670081C1

СПОСОБ ПРОВЕДЕНИЯ СЪЕМОК ЗЕМНОЙ ПОВЕРХНОСТИ ИЗ КОСМОСА 2001
  • Хусаинов Р.М.
  • Иванов Н.Н.
RU2232110C2
RU 2059540 C1, 10.05.1996
СПОСОБ НАБЛЮДЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ ИЗ КОСМОСА 1988
  • Алексеев Э.В.
  • Аншакова В.Д.
  • Бородин И.М.
  • Бырков Б.П.
  • Власов С.А.
  • Ворожейкин В.Н.
  • Григоренко О.С.
  • Дубровинский Я.В.
  • Мантуров А.И.
  • Неволько М.П.
  • Разумный Ю.Н.
  • Силов В.В.
  • Трифонов Ю.В.
  • Усталов Ю.М.
  • Чуткерашвили Г.Д.
RU2076059C1
US 6892986 B2, 17.05.2005
US 5979832 A, 09.11.1999
МАШИНОСТРОЕНИЕ
Приспособление с иглой для прочистки кухонь типа "Примус" 1923
  • Копейкин И.Ф.
SU40A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Ракетно-космическая техника
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
М.: Машиностроение
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
СПУТНИКОВЫЕ СИСТЕМЫ, c.198-215.

RU 2 670 081 C1

Авторы

Ермолаев Владимир Иванович

Цируль Даниил Георгиевич

Даты

2018-10-17Публикация

2016-04-04Подача