Способ получения функциональной керамики Российский патент 2018 года по МПК C04B33/04 C04B33/30 C04B33/32 C04B38/06 

Описание патента на изобретение RU2670312C1

Изобретение относится к керамическому производству и может быть использовано для получения функциональной керамики.

Известен способ (Патент РФ 2060238, 1996 г.), при котором смешивают следующие компоненты: жидкое стекло, растительное масло, двухкальциевый силикат, волокнистый наполнитель, медный купорос и этанол. Полученную сырьевую смесь укладывают в форму и удаляют избыточную жидкость путем уплотнения смеси. Сырьевую смесь выдерживают в форме в течение 24 часов и получают сырец. Затем в течение от 20 до 25 минут полученный сырец подвергают вспучиванию путем воздействия на него СВЧ-излучения при объемной плотности излучения 40 кВт/л и частоте 2,45 ГГц.

Известен также способ получения пористого силикатного материала (RU, 2133718, 1999 г.), при котором смешивают следующие компоненты: жидкое стекло, фторфосфат кальция, фторид алюминия в присутствии валкилбензолсульфатовой кислоты, которая обеспечивает вспенивание получаемой массы. Полученной массой заполняют форму и проводят термообработку СВЧ-излучением. Под действием СВЧ-излучения масса дополнительно вспучивается и приобретает требуемую пористую структуру.

Подбор оптимального состава шихты и термообработка под действием СВЧ-излучения позволяют обеспечить высокую прочность материала, однако высокая стоимость исходных компонентов ограничивает использование вышеуказанных изобретений.

Наиболее близким по технической сущности и достигаемому результату является способ получения алюмосиликатного пористого материала (патент РФ №2197423 опубл. 27.01.2003 г., включающий приготовление сырьевой смеси, содержащей природный глинистый минерал и воду, заполнение формы сырьевой смесью, предварительное обезвоживание смеси в поле источника тока высокой частоты, сушку и обжиг, где обезвоживание под действием СВЧ-излучения ведут до влажности материала от 22 до 24%, при этом источник СВЧ-излучения располагают таким образом, чтобы направление распространения излучения совпадало с заданной ориентацией оси вытянутых пор в материале, а сушку осуществляют в потоке инфракрасного излучения с длиной волны от 5 до 10 мкм при температуре от 40 до 110°С.

Недостатком этого способа является низкая производительность способа, т.к. проведение отдельно каждой операции требует затраты времени и обеспечить расположение источника СВЧ-излучения, так чтобы направление распространения излучения совпадало с заданной ориентацией оси вытянутых пор в материале довольно проблематично.

Технический результат - повышение производительности способа при высоких эксплуатационных характеристиках готового изделия.

Задача решается тем, что в способе получения функциональной керамики, включающем приготовление сырьевой смеси, содержащей природный глинистый минерал и воду, заполнение формы сырьевой смесью, сушку в поле источника тока высокой частоты, и обжиг, отличающийся тем, что сушку и обжиг осуществляют одновременно под действием СВЧ-излучения в три этапа: сначала в течение 10 минут при мощности СВЧ-излучения 300 Вт, затем в течение 5 минут при мощности СВЧ-излучения 500 Вт и окончательно в течение 5-10 минут при мощности СВЧ-излучения 700 Вт, причем предварительно природный глинистый минерал смешивают с мелкодисперсным углеродом 10-20 мас. %.

Обработка материалов полем СВЧ основана на поглощении электромагнитной энергии, взаимодействующей с веществом на атомном и молекулярном уровнях. Изменяя напряженность электрического поля, создаются условия, при которых температура в центре изделия выше, чем на его поверхности. Достигаемый при этом объемный нагрев изделия позволяет значительно интенсифицировать процесс термообработки. При нагреве таким источником тепла отсутствуют продукты сгорания, что сказывается на чистоте полученного изделия. Поэтапный прогрев изделия позволяет постепенно удалять остаточную после прессования воду из изделия, что приводит к снижению брака в виде растрескивания. При этом испарения капиллярной воды сопровождаются разогревом образца и началом процесса фазовых превращений, прежде всего выгоранием углерода с экзотермическим эффектом, т.е. происходит обжиг.

Способ осуществляют следующим образом.

В соответствии с международным стандартом ГОСТ 9169-75 (сырье глинистое для керамической промышленности) глина относится к легкоплавким полукислым, с высоким содержанием красящих оксидов, среднедисперсным составом, со средним содержанием водорастворимых солей. Для осуществления способа был взят монтмориллонит содержащий глины, химический состав которого приведен ниже в таблице 1.

Природный глинистый материал измельчают и просеивают, например, в шаровой мельнице до остатка не более 0,2% на сетке №0063. Затем среднедисперсную (диаметр частиц меньше 630 мкм) глину смешивают с 10-20% углерода от массы сырьевой смеси, предварительно измельченного до той же дисперсности, что и глина, постепенно вводя воду. Смешивание проводили в соответствии с ГОСТ 24409-80

«Материалы керамические электротехнические. Методы испытаний».

Из полученной сырьевой смеси влажностью 40%, формуют изделия заданной формы, например, цилиндр диаметром и высотой 2 см. Формование осуществляют полусухим прессованием, например, при давлении 50-100 МПа до остаточной влажности 20%. Затем изделие помещают в печь с источником СВЧ-излучения для сушки и обжига, которые ведут одновременно в три этапа: сначала в течение 10 минут при мощности СВЧ-излучения 300 Вт, затем в течение 5 минут при мощности СВЧ-излучения 500 Вт и окончательно в течение 5-10 минут при мощности СВЧ-излучения 700 Вт. Время последнего этапа варьируется в зависимости от дисперсности сырьевой смеси и контролируется методом колориметрии. Способ осуществляли трижды при разном содержании углерода: 10, 15 и 20 мас. %. Результаты испытаний сведены в таблицу 2.

Таким образом, по сравнению с прототипом, заявляемый способ получения функциональной керамики позволяет повысить производительность способа при высоких показателях прочности и твердости материала, т.е. эксплуатационных характеристиках готового изделия.

Похожие патенты RU2670312C1

название год авторы номер документа
Способ получения функциональной керамики из природного необогащенного глинистого сырья 2022
  • Четверикова Анна Геннадьевна
  • Бердинский Виталий Львович
  • Каныгина Ольга Николаевна
  • Межуева Лариса Владимировна
RU2802765C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОСИЛИКАТНОГО ПОРИСТОГО МАТЕРИАЛА 2002
  • Головенков А.В.
  • Козликов В.Л.
  • Маркевич М.А.
RU2197423C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОНСТРУКЦИОННО-ТЕПЛОИЗОЛЯЦИОННОЙ СТРОИТЕЛЬНОЙ КЕРАМИКИ И СОСТАВ ДЛЯ ЕЕ ИЗГОТОВЛЕНИЯ 2008
  • Вакалова Татьяна Викторовна
  • Погребенков Валерий Матвеевич
  • Ревва Инна Борисовна
RU2379258C1
СЫРЬЕВАЯ МАССА ДЛЯ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2000
  • Каймаков А.И.
  • Вороновский Н.Е.
  • Тюрин А.Н.
  • Хозин В.Г.
RU2160240C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ (ВАРИАНТЫ) 2005
  • Беседин Павел Васильевич
  • Ивлева Ирина Анатольевна
  • Мосьпан Александр Викторович
RU2277520C1
СПОСОБ ИЗГОТОВЛЕНИЯ АЭРИРОВАННЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2017
  • Дмитриев Константин Сергеевич
RU2663980C1
Способ утилизации отходов алюмохромового катализатора 2015
  • Егорова Светлана Робертовна
  • Хузин Айрат Фаритович
  • Габидуллин Булат Махмудович
  • Ламберов Александр Адольфович
RU2620679C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ОСАДОЧНЫХ ВЫСОКОКРЕМНЕЗЕМИСТЫХ ПОРОД, ШИХТА ДЛЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ И ЗАПОЛНИТЕЛЬ ДЛЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2007
  • Лесовик Валерий Станиславович
  • Строкова Валерия Валерьевна
  • Мосьпан Виктор Иванович
  • Лесовик Руслан Валерьевич
  • Жерновский Игорь Владимирович
RU2327666C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2004
  • Беседин П.В.
  • Ивлева И.А.
  • Мосьпан А.В.
RU2266267C1
СПОСОБ ИЗГОТОВЛЕНИЯ КИРПИЧА, БЛОКОВ, ФАСАДНЫХ ПЛИТОК, ПЛИТОК ВНУТРЕННЕЙ ОБЛИЦОВКИ СТЕН 1994
  • Гришин С.Н.
  • Евдокимов С.Г.
  • Евтеев Ю.В.
  • Злобин С.Е.
RU2085534C1

Реферат патента 2018 года Способ получения функциональной керамики

Изобретение относится к керамическому производству и может быть использовано для получения функциональной керамики. Технический результат - повышение производительности способа при высоких эксплуатационных характеристиках готового изделия. Способ получения функциональной керамики включает приготовление сырьевой смеси, содержащей природный глинистый минерал, мелкодисперсный углерод и воду, заполнение формы сырьевой смесью, сушку в поле источника тока высокой частоты и обжиг. Сушку и обжиг осуществляют одновременно под действием СВЧ-излучения в три этапа: сначала в течение 10 минут при мощности СВЧ-излучения 300 Вт, затем в течение 5 минут при мощности СВЧ-излучения 500 Вт и окончательно в течение 5-10 минут при мощности СВЧ-излучения 700 Вт. Углерод вводят в природный глинистый минерал в количестве 10-20 мас.%. 2 табл.

Формула изобретения RU 2 670 312 C1

Способ получения функциональной керамики, включающий приготовление сырьевой смеси, содержащей природный глинистый минерал и воду, заполнение формы сырьевой смесью, сушку в поле источника тока высокой частоты и обжиг, отличающийся тем, что сушку и обжиг осуществляют одновременно под действием СВЧ-излучения в три этапа: сначала в течение 5 минут при мощности СВЧ-излучения 300 Вт, затем в течение 5 минут при мощности СВЧ-излучения 500 Вт и окончательно в течение 5-10 минут при мощности СВЧ-излучения 700 Вт, причем предварительно природный глинистый минерал смешивают с мелкодисперсным углеродом 10-20 мас. %.

Документы, цитированные в отчете о поиске Патент 2018 года RU2670312C1

СПОСОБ ПОЛУЧЕНИЯ АЛЮМОСИЛИКАТНОГО ПОРИСТОГО МАТЕРИАЛА 2002
  • Головенков А.В.
  • Козликов В.Л.
  • Маркевич М.А.
RU2197423C1
Приспособление для загрузки топлива из бункеров в топки или другие аналогичные устройства 1931
  • Казмичев Г.П.
SU25665A1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ ТЕПЛОИЗОЛЯЦИОННЫХ ПЛИТ И СПОСОБ ИЗГОТОВЛЕНИЯ ПЛИТ 1998
  • Беленцов О.В.
  • Горшков Н.И.
  • Каткова Е.Н.
  • Молоков В.Ф.
  • Ланкин В.П.
  • Щеголев В.И.
  • Янко Э.А.
RU2144521C1
CN 106478117 A, 08.03.2017
US 5911941 A1, 15.06.1999
CN 102173832 A, 07.09.2011.

RU 2 670 312 C1

Авторы

Каныгина Ольга Николаевна

Межуева Лариса Владимировна

Четверикова Анна Геннадьевна

Пискарёва Татьяна Ивановна

Даты

2018-10-22Публикация

2018-01-10Подача