СПОСОБ ПЕРЕРАБОТКИ БИТУМНО-СОЛЕВЫХ РАДИОАКТИВНЫХ КОМПАУНДОВ Российский патент 2018 года по МПК G21F9/00 

Описание патента на изобретение RU2671243C1

Изобретение относится к области атомной энергетики и, в частности, к технологии переработки, стратегии и тактике захоронения остатков битумных компаундов, хранящихся в настоящее время наливом в каньонах на атомных электростанциях.

Основная масса солей ЖРО на АЭС содержит в своем составе нитрат натрия и его смеси с натрий боратом. Наиболее продвинутой технологией отверждения ЖРО на конец семидесятых годов прошлого столетия считался низкотемпературный процесс (<200°С) их битумирования. Однако из-за больших объемов возникавших твердых отходов, битумный компаунд было решено размещать в каньонах непосредственно на атомных электростанциях без расфасовки в контейнерах, в связи, с чем на АЭС накоплено и хранится значительное количество потенциально пожароопасных битумированных РАО.

В настоящее время в соответствии со статьей 24 п. 1 Федерального Закона №190 (2011) такие накопленные РАО АЭС должны быть извлечены, переработаны, кондиционированы и захоронены.

Для захоронения РАО, иммобилизованных в битумном компаунде, необходимо привести такие отходы в соответствие с требованиями критериев приемлемости, включая требования к упаковке. Необходимая переработка битумных компаундов затрудняется тем, что они находятся в больших емкостях и содержат нитраты щелочных элементов. Это не позволяет использовать механические методы измельчения битумов из-за возможности возгорания.

Известен способ по извлечению битума из кровельных материалов и установка для его реализации [RU 2117532 от 14.01.1993]. В данном способе предлагается измельчение битумных отходов, добавление к ним растворителя и нагревание. Предложенная установка для реализации способа содержит контейнер с растворяемыми битумными отходами, куда подведен трубопровод от резервуара с растворителем и нагреватель.

Также существует способ одностадийной обработки органических и неорганических гетерогенных радиоактивных отходов в процессе с псевдоожиженной насадкой в виде гранул песка при температурах 550-650°С при вводе перегретого пара путем осуществления процесса последующего измельчения вторичных отходов с целью увеличения наполнения цементного компаунда (до 40%) [RU 2435240 С1 от 30.07.2010].

Однако оба способа не могут применяться к переработке битумированных РАО, так как в обоих способах не предусмотрена очистка от радионуклидов и перевод их в форму пригодную для захоронения или длительного хранения.

В настоящее время не существует технологии переработки битумно-солевых радиоактивных компаундов, способной подготовить данные отходы к дальнейшему захоронению.

Техническая проблема, на решение которой направлено заявляемое изобретение, заключается в разработке способа переработки битумно-солевых радиоактивных компаундов, обеспечивающего сокращение их массы и объема для дальнейшего захоронения.

Технический результат достигается способом переработки битумно-солевых радиоактивных компаундов, включающим их перевод в водно-битумную эмульсию с помощью органического растворителя из ряда предельных углеводородов, последующий риформинг водно-битумной эмульсии на твердой насадке в псевдоожиженном слое в присутствии окислителя при подаче перегретого пара и добавлении суспензии алюмосиликатного минерала, разложение органической фазы и выведение алюмосиликатного минерала, насыщенного радионуклидами, из аппарата риформинга, последующее отверждение выводимой фазы.

Растворение радиоактивного битумного компаунда в органическом растворителе позволяет перевести его в гетерогенную систему, при этом подача водяного пара не только способствует образованию водно-битумной эмульсии. Проведение процесса в псевдосжиженном слое в присутствие твердой насадки позволяет не интенсифицировать процесс перемешивания и диспергирования органической и водной фаз. При образовании водно-битумной эмульсии происходит преобразование углеводородов при взаимодействии с водяным паром с образованием водорода

CnHm+nH2O→nCO+(n+m/2)Н2;

Соли нитратов, содержащиеся в радиоактивном битумном компаунде взаимодействуют с углеродом, образующемся в процессе пиролиза по реакции

2NaNO3+3С→2NO+3CO+Na2O,

который, в свою очередь, тоже взаимодействует с водяным паром с образованием водорода.

C+H2O→CO+H2

В паровой окружающей среде окислы натрия переходят в щелочь:

Na2O+H2O→2NaOH

Образовавшийся, в ходе реакций водород взаимодействует с кислородом (окислитель), содержащимся в подаваемом воздух, что приводит к отсутствию накопления водорода.

Окислы азота NO и NO2 восстанавливаются до азота при взаимодействии с С, СО или Н2.

В процессе риформинга в восстановительной среде (в присутствии образовавшегося водорода) происходит испарение жидких потоков отходов; разрушение органических соединений; восстановление нитратов, нитритов и азотной кислоты до элементарного азота и образование твердых минеральных продуктов. Введения в процесс алюмосиликатного минерала приводит к образованию минеральных продуктов, содержащих радионуклиды и металлы, извлеченные из радиоактивного битумного компаунда.

Хотя процесс реформинга протекает в широком интервале температур, используемый процесс является низкотемпературным реформингом, обычно протекающим в диапазоне 600-750°С с целью предотвращения улетучивания радиоактивных металлов.

В ходе проведения процесса риформинга органическая часть эмульсии превращается, главным образом, в легкие углеводороды, такие как метан, оксид углерода, водород, двуокись углерода и воду в нижней части кипящего слоя.

Следующие примеры более подробно иллюстрируют предложенное изобретение, но не ограничивают его объем.

Пример 1

1 кг битумного компаунда растворили (при темеретуре 20°С в течение 3 часов) в керосине в массовом соотношении 1:20% (0,2 кг), поместили в аппарат с двуокисью алюминия, используемого в качестве твердой насадки, где в псевдосжиженном слое при температуре 605±5°С в течении 0,5 часа в присутствии окислителя и при подаче перегретого пара с температурой 500-600°С подвергли процессу риформинга. При этом часть кипящего слоя была расположена в зоне окисления, а водно-битумную эмульсию вводили в кипящий слой путем диспергирования через форсунку при массовом соотношении азот - эмульсия 300:1,0. Соотношение эмульсии вода-масло в массовом соотношении 1:20% (1,2 кг) создавали путем добавки эмульгатора моноэтаноламина в массовом соотношении 1:0,2% (4⋅10-5 кг). Также в состав водно-битумной эмульсии вводили добавки стабилизаторов в массовом соотношении 1:0,05% (5,18⋅10-3 кг). Состав газовой среды регулировали с помощью подачи воздуха и поддержания концентрации водорода в отходящих газах на уровне не больше 2% и введением эмульсии на основе солевого раствора, содержащего нитрат-ион, щелочной металл, фосфор, бор, галоген, серу, радионуклиды. В аппарат также вводили суспензию алюмосиликатного минерала - каолиновой глины для сорбции радионуклидов и ионов-солей, содержащихся в исходном радиоактивном битумном компаунде, которая, в конце протекания процесса риформинга, выводилась из аппарата. Массовое соотношение водно-битумной эмульсии и суспензии алюмосиликатного минерала составляет 1: 5% (0,06 кг) по твердым компонентам. Разложение органической фазы до CO2 и H2O осуществлялось при температуре 605±5°С. Последующее отверждение выводимой каолиновой глины осуществлялось путем введения ее в геоцементный компаунд при массовом соотношении цемента к минеральной матрице 1:70% (0,06 кг) и добавлении щелочи в массовом соотношении 1: 20% (0,017 кг).

Сокращение количества радиоактивных отходов из расчета массы каолиновой глины насыщенной радионуклидами относительно исходной массы радиоактивного битумного компаунда, поступающего на переработку, составляет 6 раз. Очистка жидкой органической и водной фаз от радионуклидов и последующее разложение органической фазы протекает на 100%.

Пример 2

1 кг битумного компаунда растворяли в керосине в массовом соотношении 1:50% (0,5 кг) помещали в аппарат с двуокисью алюминия, используемого в качестве твердой насадки, где в псевдосжиженном слое при температуре 745±5°С в течении 2 часов в присутствии окислителя и при подаче перегретого пара с температурой 550°С подвергали процессу риформинга. При этом часть кипящего слоя была расположена в зоне окисления, а водно-битумную эмульсию вводили в кипящий слой путем диспергирования через форсунку при массовом соотношении азот- эмульсия 300:1,0. Соотношение эмульсии вода-масло в массовом соотношении 1:60% (1,5 кг) создавали путем добавки эмульгатора моноэтаноламина в массовом соотношении 1:0,5% (7,5⋅10-4 кг). Также в состав водно-битумной эмульсии вводили добавки стабилизаторов в массовом соотношении 1:0,3% (4,5⋅10-4 кг). Состав газовой среды регулировали с помощью подачи воздуха и поддержания концентрации водорода в отходящих газах на уровне не больше 2% и введением эмульсии на основе солевого раствора, содержащего -нитрат-ион, щелочной металл, фосфор, бор, галоген, серу, радионуклиды. В аппарат также вводили суспензию алюмосиликатного минерала - каолиновой глины для сорбции радионуклидов и ионов-солей, содержащихся в исходном радиоактивном битумном компаунде, которая периодически, в процессе протекания процесса риформинга, выводится из аппарата. Массовое соотношение водно-битумной эмульсии и суспензии алюмосиликатного минерала составляет 1:15% (0,076 кг) по твердым компонентам. Разложение органической фазы до CO2 и H2O осуществлялось при температуре 745±5°С. Последующее отверждение выводимой каолиновой глины осуществляли путем введения ее в геоцементный компаунд при массовом соотношении цемента к минеральной матрице 1:80% (0,075 кг) и добавлении щелочи в массовом соотношении 1: 30% (0,0225 кг).

Сокращение количества радиоактивных отходов из расчета массы каолиновой глины насыщенной радионуклидами относительно исходной массы радиоактивного битумного компаунда, поступающего на переработку, составляет 5,2 раз. Очистка жидкой органической и водной фаз от радионуклидов и последующее разложение органической фазы протекает на 100%.

Похожие патенты RU2671243C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ОТХОДОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ 1997
  • Скоморохова С.Н.
  • Копылов В.С.
  • Коновалов Э.Е.
  • Кочеткова Е.А.
  • Старков О.В.
  • Трифанова Е.М.
RU2131628C1
СПОСОБ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ОТХОДОВ 2010
  • Масанов Олег Леонидович
  • Хорошев Александр Семенович
  • Гомонов Николай Олегович
  • Хубецов Сослан Борисович
  • Ведерников Александр Анатольевич
RU2435240C1
СПОСОБ ИММОБИЛИЗАЦИИ РАДИОАКТИВНЫХ ОТХОДОВ В МИНЕРАЛОПОДОБНОЙ МАТРИЦЕ 2010
  • Аншиц Александр Георгиевич
  • Верещагина Татьяна Александровна
  • Васильева Наталия Геннадьевна
  • Гаврилов Петр Михайлович
  • Ревенко Юрий Александрович
  • Бондин Владимир Викторович
  • Кривицкий Юрий Григорьевич
  • Крючек Дмитрий Михайлович
  • Смирнов Сергей Иванович
RU2439726C1
СПОСОБ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ПЕРЛИТНЫХ СУСПЕНЗИЙ 2003
  • Кузин А.Ю.
  • Дзекун Е.Г.
  • Гергенрейдер Н.А.
RU2256966C2
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2000
  • Мартынов П.Н.
  • Богданович Н.Г.
  • Григорьев Г.В.
RU2189650C2
СПОСОБ ОСТЕКЛОВЫВАНИЯ РАДИОАКТИВНОГО ПЕРЛИТА 1998
  • Дмитриев С.А.
  • Лифанов Ф.А.
  • Кобелев А.П.
  • Лащенова Т.Н.
  • Качалова Е.А.
  • Кирьянова О.И.
RU2142655C1
СПОСОБ ПЕРЕРАБОТКИ НИТРАТСОДЕРЖАЩИХ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2013
  • Сафонов Алексей Владимирович
  • Трегубова Варвара Евгеньевна
  • Герман Константин Эдуардович
  • Назина Тамара Николаевна
  • Соколова Дияна Шамилевна
  • Ершов Борис Григорьевич
  • Горбунова Ольга Анатольевна
RU2552845C2
СПОСОБ ИММОБИЛИЗАЦИИ РАДИОНУКЛИДОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В МИНЕРАЛЬНОЙ МАТРИЦЕ 2010
  • Суворова Валерия Алексеевна
  • Ковальский Андрей Михайлович
  • Котельников Алексей Рэдович
  • Ахмеджанова Галина Мамаджановна
RU2444800C1
КОМПОЗИЦИЯ ДЛЯ ОТВЕРЖДЕНИЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2008
  • Козлов Павел Васильевич
  • Слюнчев Олег Михайлович
  • Ровный Сергей Иванович
RU2375774C1
СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ СМЕШАННЫХ РАДИОАКТИВНЫХ ОТХОДОВ 2011
  • Андрианов Анатолий Карпович
  • Кривобоков Виктор Васильевич
RU2452050C1

Реферат патента 2018 года СПОСОБ ПЕРЕРАБОТКИ БИТУМНО-СОЛЕВЫХ РАДИОАКТИВНЫХ КОМПАУНДОВ

Изобретение относится к области атомной энергетики. Способ переработки битумно-солевых радиоактивных компаундов, включающий их перевод в водно-битумную эмульсию с помощью органического растворителя из ряда предельных углеводородов, последующий риформинг водно-битумной эмульсии на твердой насадке в псевдоожиженном слое в присутствии окислителя при подаче перегретого пара и добавлении суспензии алюмосиликатного минерала, разложение органической фазы и выведение алюмосиликатного минерала, насыщенного радионуклидами, из аппарата риформинга, последующее отверждение выводимой фазы. Изобретение позволяет обеспечить сокращение массы и объема битумно-солевых радиоактивных компаундов для дальнейшего их захоронения. 10 з.п. ф-лы, 2 пр.

Формула изобретения RU 2 671 243 C1

1. Способ переработки битумно-солевых радиоактивных компаундов, включающий их перевод в водно-битумную эмульсию с помощью органического растворителя из ряда предельных углеводородов, последующий риформинг водно-битумной эмульсии на твердой насадке в псевдоожиженном слое в присутствии окислителя при подаче перегретого пара и добавлении суспензии алюмосиликатного минерала, разложение органической фазы и выведение алюмосиликатного минерала, насыщенного радионуклидами, из аппарата риформинга, последующее отверждение выводимой фазы.

2. Способ по п. 1, отличающийся тем, что растворение битумного компаунда осуществляют при температуре выше 10°С и времени растворения от 0,5-4,0 часов.

3. Способ по п. 1, отличающийся тем, что перегретый пар подают с температурой 500-600°С, процесс риформинга и разложение органической фазы до СО2 и Н2О осуществляют при температуре 600-750°С.

4. Способ по п. 1, отличающийся тем, что в качестве органического растворителя используют керосин в массовом соотношении 1:20-50%.

5. Способ по п. 1, отличающийся тем, что соотношение эмульсии вода-масло в массовом соотношении 1:20%-60% создают путем добавки эмульгатора в массовом соотношении 1:0,2%-0,5%.

6. Способ по п. 1, отличающийся тем, что в состав водно-битумной эмульсии вводят добавки стабилизаторов в массовом соотношении 1:0,05%-0,30%.

7. Способ по п. 1, отличающийся тем, что состав газовой среды регулируют с помощью подачи воздуха и поддержания концентрации водорода в отходящих газах на уровне не больше 2% и введением эмульсии на основе солевого раствора, содержащего нитрат-ион, щелочной металл, фосфор, бор, галоген, серу, радионуклиды.

8. Способ по п. 1, отличающийся тем, что в качестве твердой насадки используют гранулы двуокиси алюминия.

9. Способ по п. 1, отличающийся тем, что массовое соотношение водно-битумной эмульсии и суспензии алюмосиликатного минерала составляет 1:5%-15% по твердым компонентам.

10. Способ по п. 1, отличающийся тем, что часть кипящего слоя расположена в зоне окисления, а водно-битумную эмульсию вводят в кипящий слой путем диспергирования через форсунку при массовом соотношении азот- эмульсия 300-700:1,0.

11. Способ по п. 1, отличающийся тем, что последующее отверждение выводимой твердой фазы минеральной матрицы осуществляют путем введения ее в геоцементный компаунд при массовом соотношении цемента к минеральной матрице 1:0,7-0,8 и добавления щелочи в массовом соотношении 1:0,2-0,3.

Документы, цитированные в отчете о поиске Патент 2018 года RU2671243C1

СПОСОБ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ОТХОДОВ 2010
  • Масанов Олег Леонидович
  • Хорошев Александр Семенович
  • Гомонов Николай Олегович
  • Хубецов Сослан Борисович
  • Ведерников Александр Анатольевич
RU2435240C1
СПОСОБ ИЗВЛЕЧЕНИЯ БИТУМНОГО КОМПАУНДА ИЗ БИТУМОХРАНИЛИЩ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ 2009
  • Быстрова Елена Васильевна
  • Добровенко Сергей Вячеславович
  • Матвиенко Сергей Иванович
  • Медников Михаил Витальевич
  • Бибик Игорь Николаевич
RU2407085C1
US 4409137 A1, 11.10.1983
US 5008044 A1, 16.04.1991
Переносный станок для направления движения установленных на нем сельскохозяйственных машин и орудий 1928
  • Гершевич А.Х.
SU16462A1

RU 2 671 243 C1

Авторы

Рябков Дмитрий Викторович

Бойцова Татьяна Александровна

Масанов Олег Леонидович

Даты

2018-10-30Публикация

2017-10-30Подача