СПОСОБ НАЗЕМНОЙ ЭКСПЛУАТАЦИИ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА Российский патент 2018 года по МПК B64G1/42 G01R31/36 H01M10/44 

Описание патента на изобретение RU2671600C1

Изобретение относится к электротехнической промышленности и может быть использовано при проведении наземных испытаний космических аппаратов (КА) на заводе-изготовителе (ЗИ) КА или на техническом комплексе (ТК) в эксплуатирующей организации (ЭО).

Эксплуатация аккумуляторных батарей в процессе проведения наземных электрических испытаний системы электропитания (СЭП) связана с отдельными техническими проблемами, как правило, не критичными при их штатной эксплуатации в составе СЭП КА. В связи с этим возникает необходимость разработки и реализации дополнительных мероприятий по усовершенствованию способа эксплуатации АБ в ходе наземных испытаний (НИ), позволяющих, прежде всего, поддерживать на заданном уровне показатели ресурса и надежности эксплуатации СЭП.

Как известно, из-за значительного тепловыделения АБ в процессе разряда или заряда требуется постоянное их термостатирование. При штатном функционировании КА эту задачу решают путем использовании системы термолегулирования (СТР), в составе которой предусматривают для охлаждения АБ специальные термоплаты с жидким теплоносителем (Кирилин А.Н., Ахметов Р.Н., Сторож А.Д., Аншаков Г.П. Космическое аппаратостроение, Государственный научно-производственный ракетно-космический центр «ЦСКБ-Прогресс», г. Самара, 2011, разд. 8).

Однако термостатирование аккумуляторных батарей в процессе НИ системы электропитания в составе КА сопряжено с некоторыми трудностями. Одной из причин этого является то, что при НИ АБ при определенном соотношении значений температуры теплоносителя, с одной стороны, температуры окружающей среды и атмосферного давления, с другой стороны, возможно образование на внешней поверхности термоплат конденсата (влаги) с вытекающими отсюда негативными последствиями.

При планировании НИ СЭП в составе КА необходимо учитывать другую особенность, а именно тот экспериментально установленный факт, что при переходе от режима заряда или разряда в режим хранения электрохимические процессы в аккумуляторах не прекращаются и их интенсивность снижается только по истечению некоторого времени. К таким процессам, например, у никель-водородных аккумуляторных батарей (НВАБ), относятся рекомбинация выделяющегося частично в конечных фазах заряда и разряда кислорода с водородом и постоянно действующий процесс саморазряда аккумуляторов (B.C. Багоцкий, A.M. Скундин. Химические источники тока, М., Энергоиздат, 1981). Для других типов АБ могут быть характерны иные процессы. В конечном итоге все они способствуют локальному перегреву отдельных аккумуляторов, несмотря на то, что в это время они отключены от зарядно-разрядного цикла. Локальный перегрев аккумуляторов неизбежен и в случае их включения в зарядно-разрядный цикл без предварительного охлаждения. Этот вопрос особенно актуален, если температура окружающей среды значительно превышает номинальную рабочую температуру АБ, равную приблизительно 15°C.

Кроме того, надо иметь в виду, что в случае эксплуатации аккумуляторных батарей в составе КА путем активного их охлаждения системой терморегулирования (СТР), когда испытания организованы как непрерывный процесс, происходит неоправданный расход ресурса самой АБ и СТР. А если имеют место перерывы в работе с выключением системы электропитания КА и СТР, то такой цикл испытаний, как было отмечено выше, чреват локальным перегревом аккумуляторов, приводящим в конечном итоге к снижению надежности эксплуатации аккумуляторных батарей.

Известен способ эксплуатации аккумуляторных батарей в составе космического аппарата по патенту РФ №2144889 (аналог), заключающийся в том, что для упрощения технологии проведения наземных испытаний, а также улучшения ресурсных характеристик СТР и СЭП на днище каждой АБ закреплена образующая с ней моноблок термоплата, узлы крепления моноблока к конструкции агрегатного отсека выполнены в корпусе каждой АБ, а в термоплате каждого моноблока выполнены дополнительные гидравлические каналы, соединенные между собой с помощью трубопроводов, при этом указанные каналы и трубопроводы образуют автономную разомкнутую магистраль.

В данном техническом решении для улучшение ресурсных характеристик СТР и СЭП используется дополнительный технологический контур охлаждения АБ. При этом циркуляция теплоносителя осуществляются наземными средствами обеспечения теплового режима (НСОТР) КА. К числу недостатков аналога следует отнести:

- наличие вероятности образования на поверхности корпуса термоплат конденсата с вытекающими отсюда последствиями;

- локальный перегрев аккумуляторов;

- неоправданный расход ресурса АБ.

В целом перечисленные недостатки снижают надежность функционирования СЭП.

Известен способ эксплуатации никель-водородной аккумуляторной батареи по патенту РФ №2329572 (прототип), заключающийся в проведении зарядов и разрядов с активным термостатированием и контролем температуры аккумуляторов и хранении в заряженном или разряженном состоянии без проведения активного термостатирования; продолжении ее термостатирования по окончании заряда или разряда аккумуляторной батареи перед хранением не менее 1,5 ч от окончания заряда либо разряда.

Недостатком известного способа является то, что в процессе наземных испытаний используются штатные АБ, следовательно, происходит неоправданный расход ресурса АБ и сохраняется вероятность образования конденсата на поверхности термоплат, вследствие чего снижается надежность СЭП при ее штатной эксплуатации.

Указанные выше недостатки являются характерными применительно и к другим типам АБ, например, к литий-ионным аккумуляторным батареям (ЛИАБ), перспективным для использования в составе СЭП современных КА с большим сроком активного существования.

Задачей предполагаемого изобретения является сохранение ресурсных характеристик и повышение надежности эксплуатации различных типов аккумуляторных батарей СЭП КА на этапе проведения НИ СЭП на ЗИ КА или ТК в ЭО.

Поставленная задача достигается тем, что в способе наземной эксплуатации системы электропитания (СЭП) космического аппарата (КА), заключающемся в проведении заряда и разряда с активным термостатированием и контролем температуры штатных аккумуляторных батарей (АБ) и хранении их в заряженном или разряженном состоянии без проведения активного термостатирования, на посадочные места штатных АБ устанавливают по одному блоку согласования имитатора (БСИ), представляющему собой габаритный макет АБ; на корпусе каждого БСИ монтируют сопряженные между собой входные и повторяющие по количеству и типу соединители АБ выходные электрические соединители; причем выходные соединители всех БСИ подключают к соответствующим соединителям бортовой кабельной сети; а входные соединители БСИ соединяют с электрическими соединителями имитаторов аккумуляторных батарей (ИАБ), размещенных на отдельно стоящем стенде, используя для этого технологическую кабельную сеть (ТБКС) и наземную кабельную сеть (НКС); после завершения наземных испытаний БСИ, ТБКС, НКС, ИАБ демонтируют для последующей установки штатных АБ на термоплаты системы терморегулирования с образованием штатной конфигурации СЭП.

На фиг. 1 показаны: составные части СЭП (автоматика регулирования и контроля (АРК), батарея фотоэлектрическая (БФ), блоки согласования имитаторов БСИ (БСИ-1, …, БСИ-N, N - количество блоков согласования имитаторов), бортовая кабельная сеть (БКС), технологическая кабельная сеть (ТБКС)); схема размещения составных частей СЭП на КА в комплектации, необходимой для проведения НИ СЭП на ЗИ КА или на ТК в ЭО.

На фиг. 2 показана принципиальная электрическая схема подключения к СЭП имитаторов аккумуляторных батарей ИАБ (ИАБ-1, …, ИАБ-N), расположенных вне КА на специальном стенде.

Систему электропитания размещают на космическом аппарате (см. фиг. 1), состоящем, например, из отсека целевой аппаратуры 1, приборного отсека 2 и агрегатного отсека 3. Автоматику регулирования и контроля (АРК) 4 устанавливают в (на) приборном отсеке 2. На место штатных АБ монтируют соответствующие блоки согласования имитаторов БСИ (БСИ-1, …, БСИ-N) 5, причем их закрепляют, например, к корпусу агрегатного отсека 3 через штатные узлы крепления 6, в качестве которых используют штатные термоплаты (ТП) системы терморегулирования КА. Термоплаты ТП (ТП-1, …, ТП-N) 6 соединяют между собой магистральными трубопроводами 7 для образования штатного контура термостатирования. Для подключения имитаторов аккумуляторных батарей к АРК 4 применяют технологическую кабельную сеть (ТБКС) 8, расположенную между ИАБ с наземной кабельной сетью (НКС) 14 и блоками согласования имитаторов БСИ (БСИ-1, …, БСИ-N) 5. На корпусе каждого БСИ установлены входные соединители 15 и выходные соединители 16, которые соответственно состыкованы с соединителями ТБКС 8 и соединителями БКС 9. Соединители 16 идентичны (по типу и количеству) с соединителями штатной АБ, причем входные и выходные соединители электрически связаны между собой. Штатную бортовую кабельную сеть (БКС) 9, связывающую штатные АБ с АРК 4 для штатной эксплуатации СЭП, задействуют в процессе НИ путем применения соответствующих блоков согласования имитаторов БСИ (БСИ-1, …, БСИ-N) 5. Необходимо отметить, что блоки согласования имитаторов представляют собой габаритные полые модели штатных АБ и не выделяют тепла, в связи с чем не требуют термостатирования. Кроме того, габаритные размеры блоков согласования имитаторов БСИ (БСИ-1, …, БСИ-N) 5 выбирают практически совпадающими с габаритными размерами штатных АБ, что упрощает: технологию монтажа (демонтажа) ИБС, операции по замене БСИ на штатные АБ, использование штатной БКС 9 для НИ СЭП. Применение штатных термоплат ТП (ТП-1, …, ТП-N) 6 в качестве узлов крепления блоков согласования имитаторов БСИ (БСИ-1, …, БСИ-N) 5 также направлено на упрощение технологии монтажных и демонтажных операций. Батарею фотоэлектрическую 10 отключают на время наземных испытаний от СЭП, при этом функцию штатной БФ 10 выполняет имитатор БФ (на фиг. 1 имитатор БФ не показан). Имитатор БФ используется также в качестве наземного источника питания для заряда АБ после их установки на штатные термоплаты ТП (ТП-1, …, ТП-N) 6. Электрическую стыковку имитатора БФ с АРК 4 осуществляют через штатные электрические соединители 11 БКС 9.

На стенде 12 (см. фиг. 2), установленном вне КА, размещают имитаторы аккумуляторных батарей ИАБ (ИАБ-1, …, ИАБ-N) 13, которые подключают другим составным частям СЭП через блоки согласования имитаторов БСИ (БСИ-1, …, БСИ-N) 5 с помощью НКС 14, ТБКС 8 и БКС 9 (см. фиг. 1). Имитаторы ИАБ (ИАБ-1, …, ИАБ-N) 13 хотя и относятся к источникам тепловыделения, однако из-за высокого коэффициента полезного действия не требуют термостатирования, что является их существенным преимуществом перед штатными АБ.

При использовании предлагаемого технического решения эксплуатация АБ при проведении НИ СЭП на ЗИ КА или на ТК в ЭО существенно упрощается, поскольку АБ переводятся в режим хранения. При этом возможен саморазряд их аккумуляторов, поэтому проведение заряда АБ от наземного источника питания (или имитатора БФ) после установки АБ на штатные термоплаты является обязательной операцией. В режиме хранения, как правило, не применяется термостатирование штатных АБ, тем более с использованием термоплат с жидким теплоносителем, следовательно, проблема защиты АБ от возможной коррозии ее элементов и локального перегрева не возникает.

Установка и использование вместо штатных АБ на время проведения НИ их электронных имитаторов позволяет сохранить ресурсные характеристики СЭП в целом, а блоки согласования имитаторов БСИ (БСИ-1, …, БСИ-N) 5, не содержащие в своем составе источников тепла, не требуют, как было отмечено выше, термостатирования. Следовательно, штатные термоплаты ТП (ТП-1, …, ТП-N) 6 можно использовать только для закрепления блоков согласования имитаторов БСИ (БСИ-1, …, БСИ-N) 5, в силу чего в процессе наземных испытаний СЭП не происходит неоправданного расхода ресурса СТР, поскольку термоплаты ТП (ТП-1, …, ТП-N) 6 штатно в это время не функционируют. В то же время применение блоков согласования имитаторов БСИ (БСИ-1, …, БСИ-N) 5 позволяет использовать штатную БКС по прямому назначению и проверить экспериментально правильность схемных решений СЭП в целом.

В процессе проведения наземных испытаний СЭП в составе КА возможны варианты, когда испытания выполняют в различной конфигурации СЭП, следовательно, в случае перехода от конфигурации СЭП с использованием штатных АБ на конфигурацию с использованием ИАБ и БСИ вместо АБ, то последовательность описанных выше операций повторяют. Подобный вариант возникает, например, после завершения НИ на ЗИ КА и перед началом НИ на ТК в ЭО, поскольку штатные АБ транспортируются в ЭО в составе КА.

Таким образом, применение предлагаемого способа эксплуатации аккумуляторных батарей позволяет сохранить ресурсные характеристики и повысить надежность эксплуатации различных типов АБ системы электропитания космических аппаратов на этапе проведения наземных испытаний СЭП на заводе-изготовителе КА или техническом комплексе в эксплуатирующей организации.

Похожие патенты RU2671600C1

название год авторы номер документа
СПОСОБ НАЗЕМНОЙ ЭКСПЛУАТАЦИИ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2017
  • Пушкин Валерий Иванович
  • Миненко Сергей Иванович
  • Гуртов Александр Сергеевич
  • Фомакин Виктор Николаевич
RU2661187C1
КОСМИЧЕСКИЙ АППАРАТ 1999
  • Гуртов А.С.
  • Филатов А.Н.
  • Фомакин В.Н.
  • Томина В.С.
RU2156211C1
Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов 2015
  • Ганзбург Михаил Феликсович
  • Лишаев Сергей Михайлович
  • Мищенко Наталья Ивановна
  • Трофименко Владимир Иванович
  • Шурыгин Павел Константинович
RU2609619C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОСМИЧЕСКОГО АППАРАТА 2013
  • Коротких Виктор Владимирович
  • Лесковский Андрей Гавриилович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
  • Тютюнин Тимофей Викторович
  • Шанаврин Владимир Сергеевич
RU2548313C2
СПОСОБ УПРАВЛЕНИЯ СИСТЕМОЙ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2018
  • Сторож Александр Дмитриевич
  • Пушкин Валерий Иванович
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Пильгаев Сергей Николаевич
  • Черняев Игорь Владимирович
  • Демидова Ирина Игоревна
  • Калинкина Юлия Александровна
  • Данов Евгений Андреевич
RU2682725C1
КОСМИЧЕСКИЙ АППАРАТ 1999
  • Филатов А.Н.
  • Фомакин В.Н.
  • Томина В.С.
  • Черкунов А.Б.
RU2164881C1
КОСМИЧЕСКИЙ АППАРАТ 1998
  • Гуртов А.С.
  • Филатов А.Н.
  • Фомакин В.Н.
  • Томина В.С.
  • Китаев А.И.
  • Быков С.М.
RU2144889C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОСМИЧЕСКОГО АППАРАТА 2012
  • Коротких Виктор Владимирович
  • Лесковский Андрей Гавриилович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
RU2496690C1
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2007
  • Пушкин Валерий Иванович
  • Гуртов Александр Сергеевич
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Петренко Юрий Дмитриевич
RU2349518C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОСМИЧЕСКОГО АППАРАТА 2012
  • Коротких Виктор Владимирович
  • Лесковский Андрей Гавриилович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
  • Шанаврин Владимир Сергеевич
RU2536003C2

Иллюстрации к изобретению RU 2 671 600 C1

Реферат патента 2018 года СПОСОБ НАЗЕМНОЙ ЭКСПЛУАТАЦИИ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА

Изобретение относится к наземным электротехническим испытаниям космических аппаратов. Способ заключается в проведении заряда и разряда аккумуляторных батарей (АБ) с активным термостатированием и контролем температуры штатных АБ и в хранении их без проведения термостатирования. Вначале на посадочные места штатных АБ устанавливают блоки согласования (габаритные макеты) имитаторов АБ. На корпусе каждого блока монтируют входные и выходные электрические соединители, соответствующие соединителям АБ. Выходные соединители всех блоков подключают к бортовой кабельной сети, а входные соединители через технологическую и наземную кабельные сети - к имитаторам АБ. По завершении наземных испытаний указанные блоки согласования, кабельные сети и имитаторы АБ демонтируют. На термоплаты системы терморегулирования устанавливают штатные АБ, образуя штатную конфигурацию системы электропитания. Техническим результатом является сохранение ресурсных характеристик и повышение надежности эксплуатации различных типов аккумуляторных батарей (АБ) на разных этапах их жизненного цикла. 3 ил.

Формула изобретения RU 2 671 600 C1

Способ наземной эксплуатации аккумуляторных батарей системы электропитания космического аппарата, заключающийся в том, что заряд и разряд проводят с активным термостатированием и контролем температуры штатных аккумуляторных батарей (АБ) и хранят их в заряженном или разряженном состоянии без проведения активного термостатирования, отличающийся тем, что на посадочные места штатных АБ устанавливают по одному блоку согласования имитатора (БСИ) АБ, представляющему собой габаритный макет АБ, на корпусе каждого БСИ монтируют сопряженные между собой входные и повторяющие по количеству и типу соединители АБ выходные электрические соединители, причем выходные соединители всех БСИ подключают к соответствующим соединителям бортовой кабельной сети, а входные соединители БСИ соединяют с электрическими соединителями имитаторов АБ, размещенных на отдельно стоящем стенде, используя для этого технологическую кабельную сеть и наземную кабельную сеть, а после завершения наземных испытаний БСИ технологическую и наземную кабельные сети, имитаторы АБ демонтируют для последующей установки штатных АБ на термоплаты системы терморегулирования с образованием штатной конфигурации системы электропитания.

Документы, цитированные в отчете о поиске Патент 2018 года RU2671600C1

СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ 2007
  • Коротких Виктор Владимирович
  • Зенин Геннадий Александрович
  • Лесковский Андрей Гаврилович
  • Шевченко Юрий Михайлович
RU2329572C1
СПОСОБ ЭЛЕКТРИЧЕСКИХ ПРОВЕРОК КОСМИЧЕСКОГО АППАРАТА 2013
  • Коротких Виктор Владимирович
  • Лесковский Андрей Гавриилович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
  • Прокофьев Евгений Николаевич
  • Тютюнин Тимофей Викторович
  • Баркова Светлана Николаевна
RU2559661C2
КОСМИЧЕСКИЙ АППАРАТ 1998
  • Гуртов А.С.
  • Филатов А.Н.
  • Фомакин В.Н.
  • Томина В.С.
  • Китаев А.И.
  • Быков С.М.
RU2144889C1
КОСМИЧЕСКИЙ АППАРАТ 1999
  • Филатов А.Н.
  • Фомакин В.Н.
  • Томина В.С.
  • Черкунов А.Б.
RU2164881C1
WO 2011001268 A1, 06.01.2011
Электролизер для получения хлора и щелочи 1975
  • Есиказу Кокубу
  • Исао Оказаки
  • Харуо Сикано
SU784800A3
US 3535683 А, 20.10.1970.

RU 2 671 600 C1

Авторы

Пушкин Валерий Иванович

Миненко Сергей Иванович

Гуртов Александр Сергеевич

Фомакин Виктор Николаевич

Даты

2018-11-02Публикация

2017-10-05Подача