Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов Российский патент 2017 года по МПК B64G7/00 

Описание патента на изобретение RU2609619C2

Изобретение относится к испытательной технике и может быть использовано при проектировании и наземной экспериментальной отработке системы электропитания (СЭП) космического аппарата (КА).

В космической технике среди прочих стоит задача по увеличению срока активного существования автоматических КА. При этом наблюдается тенденция возрастания величины среднесуточной электрической мощности, необходимой для нормального функционирования бортовой аппаратуры (БА) космического аппарата. Поэтому создание надежной СЭП с большим ресурсом работы является актуальной задачей.

Основным источником электрической энергии на КА являются электрические генераторы на основе фотоэлектрических преобразователей (ФЭП), размещаемых на батарее солнечной (БС). На теневых участках орбиты КА бортовая аппаратура питается от аккумуляторных батарей (АБ), которые периодически заряжаются генерируемым БС током.

Необходимость непрерывного питания БА электроэнергией и поддержания стабилизированного напряжения обуславливает использование в СЭП аппаратуры регулирования и контроля (АРК), представляющего собой сложную электрическую и электронную аппаратуру.

Технология проведения комплексных испытаний СЭП имеет свои особенности и, как правило, существенно отличается от традиционных методов, основанных на использовании штатного прибора в качестве объекта испытаний.

Наиболее простой способ комплексных испытаний СЭП - это проведение наземных электрических испытаний в составе штатного КА. При этом используются штатные АБ и АРК, а вместо БС - ее электронный имитатор. Нагрузкой является бортовая аппаратура, потребляющая электроэнергию как от имитатора батареи солнечной (ИБС), так и от АБ в зависимости от величины потребляемого тока. Комплексные испытания СЭП подобного типа являются частью испытаний всего КА (Козлов Д.И., Аншаков Г.П. и др. Конструирование автоматических КА. - М.: Машиностроение, 1996, 448 с, 2 гл.).

Частичное или полное ограничение комплексных испытаний СЭП, проводимых автономно вне штатного КА, оправдано только в том случае, если СЭП прошла летно-конструкторские испытания в составе других КА и не является новой разработкой.

В противном случае (при проведении комплексных испытаний в составе штатного КА) при наличии неисправностей возможны большие затраты как трудовые, так и финансовые, связанные с демонтажом (монтажом) уже установленных на борт КА составных частей СЭП с соответствующей их отправкой на завод-изготовитель на ремонт.

Таким образом, для вновь проектируемых СЭП возникает необходимость проведения комплексных испытаний на специальном стенде - автоматизированном рабочем месте (АРМ).

Известно автоматизированное рабочее место для моделирования и испытаний системы электропитания космического аппарата, содержащее имитатор батареи солнечной, имитатор аккумуляторной батареи, имитатор нагрузки, систему управления и аппаратуру регулирования и контроля, силовые выводы которой подключены к выходам соответствующих имитаторов (патент РФ 2349518).

Аппаратура регулирования и контроля СЭП КА содержит стабилизатор напряжения (параллельный стабилизатор, подключаемый параллельно БС) и параллельно соединенные зарядное и разрядное устройства, включенные между плюсовой шиной СЭП и плюсовым выводом АБ. К плюсовой и минусовой шинам подключен емкостный фильтр. Полезная нагрузка КА подключается к плюсовой и минусовой шинам СЭП, причем минусовая шина соединена с минусовым выводом АБ. Аппаратура регулирования и контроля должна обеспечивать стабилизированное напряжение на шинах СЭП с высокой точностью и при заданных параметрах переходных процессов.

В известном АРМ содержатся как физические так электронные имитаторы компонентов СЭП КА, которые управляются сложной в наладке и настройке системой управления. В известном АРМ не применяется модульный принцип построения имитаторов, он сложен в освоении персоналом.

Таким образом, недостатком прототипа является его высокая себестоимость и относительно низкая эффективность испытаний и экспериментальной отработки АРК.

Задачей изобретения является увеличение точности моделирования СЭП и эффективности испытаний АРК, а также снижение себестоимости изготовления и эксплуатации АРМ.

Указанная задача решается в автоматизированном рабочем месте для моделирования и испытаний системы электропитания космического аппарата, содержащем имитатор батареи солнечной, имитатор аккумуляторной батареи, имитатор нагрузки, систему управления и аппаратуру регулирования и контроля, силовые выводы которой подключены к выходам соответствующих имитаторов.

Имитатор батареи солнечной содержит блок управления и последовательно соединенные выпрямитель, регулируемый источник питания и цепь из параллельно соединенных стабилизаторов тока, входы управления которых соединены с выходами блока управления имитатора батареи солнечной, имитатор нагрузки содержит блок управления стабилизаторами тока и цепь из параллельно соединенных стабилизаторов тока, входы управления которых соединены с выходами блока управления стабилизаторами тока, имитатор аккумуляторной батареи содержит последовательно соединенные модули, содержащие электрохимические источники тока, к выводам которых подключены входы блоков измерения напряжения и блоков выравнивания, входы контроля и управления которых соединены с выходами контроллера управления, входы/выходы системы управления соединены с входами/выходами блока управления имитатора батареи солнечной, с входами/выходами блока управления стабилизаторами тока нагрузки и с входами/выходами контроллера управления имитатора аккумуляторной батареи.

На фиг. 1 показана схема АРМ для моделирования СЭП КА.

На фиг. 2 приведена структурная схема ИАБ.

Автоматизированное рабочее место для моделирования и испытаний системы электропитания космического аппарата содержит имитатор батареи солнечной 1, имитатор аккумуляторной батареи 2, имитатор нагрузки 3, систему управления 4 и аппаратуру регулирования и контроля 5, силовые выводы которой подключены к выходам соответствующих имитаторов. В состав системы управления 4 входит персональный компьютер.

Имитатор батареи солнечной 1 содержит блок управления 6 и последовательно соединенные выпрямитель 7, регулируемый источник питания 8 и цепь из параллельно соединенных стабилизаторов тока 9, входы управления которых соединены с выходами блока управления имитатора батареи солнечной.

Имитатор нагрузки 3 содержит блок управления стабилизаторами тока 10 и цепь из параллельно соединенных стабилизаторов тока 11, входы управления которых соединены с выходами блока управления стабилизаторами тока 10. Мощность нагрузки зависит от уровня тока стабилизации и количества включенных стабилизаторов (например, при токе стабилизации 1А и 100 включенных стабилизаторов нагрузка будет потреблять ток 100 А). Стабилизаторы тока могут быть выполнены на базе транзисторов, работающих в линейном режиме. Например, при токе стабилизации 1А и напряжении СЭП 30В мощность единичного стабилизатора составляет 30 Вт.

Имитатор аккумуляторной батареи 2 содержит последовательно соединенные модули 12, содержащие электрохимические источники тока. К выводам модулей 12 подключены входы блоков измерения напряжения 13 и блоков выравнивания 14, входы контроля и управления которых соединены с выходами контроллера управления 15.

Входы/выходы системы управления 4 соединены с входами/выходами блока управления 6 имитатора батареи солнечной, с входами/выходами блока 10 управления стабилизаторами тока нагрузки и с входами/выходами контроллера 15 управления имитатора аккумуляторной батареи. Аппаратура регулирования и контроля 5 содержит регулятор напряжения на шинах СЭП и зарядно-разрядные устройства.

Функционирование АРМ в процессе моделирования и испытаний АРК и СЭП в целом осуществляется следующим образом. С персонального компьютера, входящего в состав системы управления АРМ, задается циклограмма работы СЭП КА, то есть временные интервалы солнце - тень.

На солнечном участке орбиты источником электрической энергии является ИБС. На теневых участках орбиты аппаратура питается от ИАБ, которые периодически заряжаются генерируемым ИБС током. Изменение мощности и формирование заданной вольтамперной характеристики имитатора батареи солнечной 1 обеспечивается включением соответствующего количества стабилизаторов тока и изменением напряжения регулируемого источника питания 8. Изменение потребляемой мощности имитатора нагрузки 3 обеспечивается включением соответствующего количества стабилизаторов тока 11. Имитатор аккумуляторной батареи 2 заряжается зарядным устройством АРК на солнечном участке орбиты, а на теневом участке ИАБ через разрядное устройство аппаратуры регулирования и контроля 5 обеспечивает стабилизированным напряжением имитатор нагрузки 3. Имитатор аккумуляторной батареи 2 выполняется на основе электрохимических элементов, аналогичных электрохимической системе штатной АБ, а блоки измерения напряжения 13, блоки выравнивания 14 и контролер управления 15 схемотехнически и алгоритмически не отличаются от соответствующей аппаратуры штатной АБ.

Таким образом, АРМ обеспечивает точное моделирование работы СЭП на всех участках орбиты космического аппарата и существенно повышает эффективность испытаний аппаратуры регулирования и контроля.

Снижение стоимости АРМ обеспечивается путем использования модульного принципа построения имитаторов - параллельное соединение стабилизаторов тока в ИБС и имитаторе нагрузки и последовательное соединение электрохимических элементов ИАБ.

Универсальные части АРМ используются для моделирования и испытаний СЭП последующих изделий, что ускоряет окупаемость данного АРМ и снижает себестоимость изготовления следующего.

Таким образом, предложенное АРМ для моделирования и испытаний системы электропитания КА позволяет увеличить точность моделирования, повысить эффективность испытания АРК и снизить затраты на изготовление и эксплуатацию стендов для экспериментальной отработки СЭП.

Похожие патенты RU2609619C2

название год авторы номер документа
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2007
  • Пушкин Валерий Иванович
  • Гуртов Александр Сергеевич
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Петренко Юрий Дмитриевич
RU2349518C1
СПОСОБ НАЗЕМНОЙ ЭКСПЛУАТАЦИИ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2017
  • Пушкин Валерий Иванович
  • Миненко Сергей Иванович
  • Гуртов Александр Сергеевич
  • Фомакин Виктор Николаевич
RU2671600C1
СПОСОБ УПРАВЛЕНИЯ СИСТЕМОЙ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2018
  • Сторож Александр Дмитриевич
  • Пушкин Валерий Иванович
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Пильгаев Сергей Николаевич
  • Черняев Игорь Владимирович
  • Демидова Ирина Игоревна
  • Калинкина Юлия Александровна
  • Данов Евгений Андреевич
RU2682725C1
СПОСОБ УПРАВЛЕНИЯ СИСТЕМОЙ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2014
  • Рясной Николай Владимирович
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Безбородова Людмила Владимировна
  • Колесников Константин Сергеевич
RU2593760C9
АВТОНОМНАЯ СИСТЕМА ЭЛЕКТРОПИТАНИЯ 2005
  • Бушуева Елена Ивановна
  • Галочкин Сергей Александрович
  • Кудряшов Виктор Спиридонович
  • Эльман Виктор Олегович
RU2317216C2
СПОСОБ УПРАВЛЕНИЯ АВТОНОМНОЙ СИСТЕМОЙ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2015
  • Рясной Николай Владимирович
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Данов Евгений Андреевич
RU2593599C1
СПОСОБ УПРАВЛЕНИЯ СИСТЕМОЙ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2013
  • Григорьев Сергей Константинович
  • Гуртов Александр Сергеевич
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Сыгуров Юрий Михайлович
RU2537389C1
СПОСОБ УПРАВЛЕНИЯ АВТОНОМНОЙ СИСТЕМОЙ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2014
  • Рясной Николай Владимирович
  • Миненко Сергей Иванович
  • Гуртов Александр Сергеевич
  • Фомакин Виктор Николаевич
RU2572396C1
СПОСОБ УПРАВЛЕНИЯ СИСТЕМОЙ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2017
  • Рясной Николай Владимирович
  • Фомакин Виктор Николаевич
  • Колесников Константин Сергеевич
  • Демидова Ирина Игоревна
  • Родионова Нина Анатольевна
RU2675590C1
СИСТЕМА ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2016
  • Кочура Сергей Григорьевич
  • Школьный Вадим Николаевич
  • Шиняков Юрий Александрович
  • Лопатин Александр Александрович
  • Сунцов Сергей Борисович
  • Семенов Валерий Дмитриевич
  • Кабиров Вагиз Александрович
  • Осипов Александр Владимирович
  • Черная Мария Михайловна
  • Латыпов Раимджан Акмальханович
RU2650875C2

Иллюстрации к изобретению RU 2 609 619 C2

Реферат патента 2017 года Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов

Изобретение относится к испытательной технике и может быть использовано при экспериментальной отработке системы электропитания КА. Автоматизированное рабочее место для исследований и испытания систем электропитания КА содержит имитатор батареи солнечной, имитатор аккумуляторной батареи, имитатор нагрузки, систему управления и аппаратуру регулирования и контроля. Силовые выводы аппаратуры регулирования и контроля подключены к выходам соответствующих имитаторов. Имитатор батареи солнечной содержит блок управления и последовательно соединенные выпрямитель, регулируемый источник питания и цепь из параллельно соединенных стабилизаторов тока. Имитатор нагрузки содержит блок управления стабилизаторами тока и цепь из параллельно соединенных стабилизаторов тока. Имитатор аккумуляторной батареи содержит последовательно соединенные модули, включающие электрохимические источники тока. Техническим результатом изобретения является повышение точности моделирования и эффективности испытания автоматизированного рабочего места. 2 ил.

Формула изобретения RU 2 609 619 C2

Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов, содержащее имитатор батареи солнечной, имитатор аккумуляторной батареи, имитатор нагрузки, систему управления и аппаратуру регулирования и контроля, силовые выводы которой подключены к выходам соответствующих имитаторов, отличающееся тем, что имитатор батареи солнечной содержит блок управления и последовательно соединенные выпрямитель, регулируемый источник питания и цепь из параллельно соединенных стабилизаторов тока, входы управления которых соединены с выходами блока управления имитатора батареи солнечной, имитатор нагрузки содержит блок управления стабилизаторами тока и цепь из параллельно соединенных стабилизаторов тока, входы управления которых соединены с выходами блока управления стабилизаторами тока, имитатор аккумуляторной батареи содержит последовательно соединенные модули, содержащие электрохимические источники тока, к выводам которых подключены входы блоков измерения напряжения и блоков выравнивания, входы контроля и управления которых соединены с выходами контроллера управления, входы/выходы системы управления соединены с входами/выходами блока управления имитатора батареи солнечной, с входами/выходами блока управления стабилизаторами тока нагрузки и с входами/выходами контроллера управления имитатора аккумуляторной батареи.

Документы, цитированные в отчете о поиске Патент 2017 года RU2609619C2

СПОСОБ ЭЛЕКТРИЧЕСКИХ ПРОВЕРОК КОСМИЧЕСКОГО АППАРАТА 2013
  • Коротких Виктор Владимирович
  • Лесковский Андрей Гавриилович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
  • Прокофьев Евгений Николаевич
  • Тютюнин Тимофей Викторович
  • Баркова Светлана Николаевна
RU2559661C2
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2007
  • Пушкин Валерий Иванович
  • Гуртов Александр Сергеевич
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Петренко Юрий Дмитриевич
RU2349518C1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1

RU 2 609 619 C2

Авторы

Ганзбург Михаил Феликсович

Лишаев Сергей Михайлович

Мищенко Наталья Ивановна

Трофименко Владимир Иванович

Шурыгин Павел Константинович

Даты

2017-02-02Публикация

2015-06-29Подача