ЛЮМИНЕСЦИРУЮЩАЯ СТЕКЛОКЕРАМИКА Российский патент 2018 года по МПК C03C10/02 C03C4/12 C03C3/62 

Описание патента на изобретение RU2674667C1

Изобретение относится к прозрачным стеклокристаллическим оксидным материалам, в частности к прозрачной люминесцирующей стеклокерамике, которая может использоваться в качестве преобразователя УФ-С излучения в квазибелый свет.

Выделение в объеме стекла широкозонных полупроводниковых нанокристаллов, в частности обращенной шпинели γ-Ga2O3, позволяет получать прозрачную стеклокерамику, люминесцирующую в видимой области. При возбуждении излучением УФ-С диапазона спектр люминесценции этой стеклокерамики представляет собой суперпозицию УФ, синей и зеленой полос с максимумами при ~350, 460 и 530 нм. Наблюдаемое рекомбинационное свечение обусловлено собственными дефектами фазы γ-Ga2O3, выступающими в качестве доноров и акцепторов [1]. Изменение их количества и соотношения за счет легирования нанокристаллов γ-Ga2O3 гетеровалентными примесями, позволяет управлять спектральным распределением люминесценции стеклокерамики. В работах [2, 3] показана возможность создания светодиода белого свечения на основе квантовых точек γ-Ga2O3 с родамином В или красителем ATTO565. При возбуждении УФ излучением диода люминесцируют не только нанокристаллы, но и лиганды за счет безызлучательной передачи к ним энергии возбуждения от γ-Ga2O3. Результирующее от них свечение имеет белый цвет, однако, стабильность и длительность службы таких гибридных структур, очевидно, крайне низка.

Наиболее близким аналогом к заявляемому материалу является прозрачная стеклокерамика состава (мас. %) (0,03-3,02)Li2O-(0,08-6,07)Na2O-(27,9-52,5)Ga2O3-(15,4-25,5)SiO2-(26,8-44,4)GeO2 [4]. Недостатком прототипа является относительно узкая (Δλ≈150 нм) бесструктурная полоса люминесценции с максимумом (≈460 нм) в синей области спектра. Это не позволяет использовать известный материал для преобразования УФ-С излучения в квазибелый свет без применения дополнительных источников излучения.

Техническим результатом настоящего изобретения является разработка прозрачной стеклокерамики, содержащей легированные TiO2 нанокристаллы γ-Ga2O3, спектральное распределение свечения которой близко к таковому для стандартных источников света серии «D».

Технический результат достигается составом стекла, включающего Li2O, Na2O, Ga2O3, SiO2, GeO2 и TiO2 при следующем соотношении компонентов (мас. %):

Li2O 0,03-2,94

Na2O 0,06-5,77

Ga2O3 26,5-53,5

SiI2 9,9-17,3

GeO2 31,2-54,1

TiO2 0,04-3,9 сверх 100%

Изменение концентрации вышеуказанных оксидов в заявляемых пределах не влияет на состав первично выделяющейся кристаллической фазы, а только на отношение амплитуд гауссовых компонент для рассматриваемой полосы люминесценции, интегральную интенсивность свечения заявляемой стеклокерамики и склонность исходного стекла к кристаллизации.

В таблице 1 представлен ряд составов синтезированных стекол, на основе которых получены стеклокристаллические материалы.

Режимы термообработок, соотношение гауссовых компонент для рассматриваемой полосы, определяющее цвет свечения, цветовые координаты и коэффициент пропускания (при λ=580 нм для образцов толщиной 1 мм) полученных образцов стеклокерамики представлены в Таблице 2.

Достижение заявляемого технического результата подтверждается следующими примерами.

Пример 1

Готовят шихту для синтеза стекла №1. Исходные материалы SiO2, GeO2, TiO2 марки «ос. ч.», Ga2O3, Li2CO3, Na2CO3 марки «х.ч.» взвешивают на аналитических весах и смешивают в требуемом соотношении. Варку стекла осуществляют в электрических печах сопротивления в платиновом тигле в течение 40 мин. Выработку проводят путем закалки расплава. Для получения стеклокерамики исходное стекло подвергают обработке в области температур максимума экзотермического пика. Режимы термообработок выбирают на основе результатов дифференциальной сканирующей калориметрии.

Рентгенофазовый анализ (РФА) термообработанного и исходного стекол осуществляли на рентгеновском дифрактометре D2 Phaser (Bruker, CuKα, Ni фильтр) для образцов в виде порошка дисперсностью ~40 мкм в интервале углов 2θ=10-70°.

Спектры поглощения термообработанных стекол регистрировали на сканирующем двухлучевом спектрофотометре UV-3600 (Shimadzu). Спектры люминесценции в видимой области тех же образцов получали на спектрально-аналитическом комплексе на базе монохроматора/спектрографа MS3504i (SOL Instruments).

Данное стекло после обработки при температуре максимума экзотермического пика (675°С) люминесцирует при возбуждении УФ-С излучением (λ<280 нм) в широком диапазоне длин волн. Полоса люминесценции содержит три гауссовы компоненты с максимумами в УФ, синей и зеленой области спектра (Фиг. 1. Спектры люминесценции термообработанных стекол составов №№1-4), соотношение амплитуд которых указано в Таблице 2. Полученное соотношение указанных компонент приводит к сближению цветовых координат наблюдаемого излучения и стандартного источника света серии «D» в цветовом пространстве CIE (Фиг. 2. Координаты цветности излучения термообработанных стекол составов №№1-4 и стандартного источника белого света D65 в цветовом пространстве CIE-1931).

Пример 2

Готовят шихту и синтезируют стекло №2 (Таблица 1) аналогично методике, приведенной в примере 1. Отличие состоит в отсутствии добавки TiO2. Свойства стеклокерамики приведены в Таблице 2. Данное стекло после обработки при температуре максимума экзотермического пика (675°С) также люминесцирует в видимой области (Фиг. 1). Однако цветовые координаты наблюдаемого свечения сильно отличаются от таковых для стандартного источника света серии «D» (Фиг. 2).

Пример 3

Готовят шихту и синтезируют стекло №3 (Таблица 1) аналогично методике, приведенной в примере 1. Свойства стеклокерамики приведены в Таблице 2. Данное стекло после обработки при температуре максимума экзотермического пика (675°С) также люминесцирует в видимой области (Фиг. 1), однако размер и содержание выделившихся нанокристаллов, согласно РФА, меньше, чем в стекле состава №1, что приводит к снижению интегральной интенсивности свечения.

Пример 4

Готовят шихту и синтезируют стекло №4 (Таблица 1) аналогично методике, приведенной в примере 1. Свойства стеклокерамики приведены в Таблице 2. Данное стекло после обработки при температуре максимума экзотермического пика (675°С) также люминесцирует в видимой области (Фиг. 1), однако координаты цветности смещены в сторону зеленого цвета (Фиг. 2), что затрудняет использование этой стеклокерамики в качестве источника квазибелого света.

Пример 5

Готовят шихту и синтезируют стекла составов №№5-8 (Таблица 1) аналогично методике, приведенной в примере 1. Свойства полученной стеклокерамики приведены в Таблице 2. Данные стекла после термообработки по режимам, указанным в Таблице 2, также люминесцируют в видимой области, однако содержание нанокристаллов, согласно РФА, для состава №5 меньше, чем у стекла состава №1 (Фиг. 3), что снижает интегральную интенсивность полосы люминесценции. Стекла составов №№6-8 характеризуются повышенной склонностью к кристаллизации, что приводит к значительному снижению светопропускания (Таблица 2).

Литература

1. Т. Wang, S.S. Farvid, M. Abulikemu, P.V. Radovanovic. Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals. J.Am. Chem. Soc. 132 (2010) 9250-9252.

2. T. Wang, V. Chirmanov, W. H. M. Chiu, P.V. Radovanovic. Generating tunable white light by resonance energy transfer in transparent dye-conjugated metal oxide nanocrystals. J.Am. Chem. Soc. 135 (2013) 14520-14523.

3. V. Chirmanov, P.C. Stanish, A. Layek, Pavle V. Radovanovic. Distance-dependent energy transfer between Ga2O3 Nanocrystal defect states and conjugated organic fluorophores in hybrid white-light-emitting nanophosphors. J.Phys. Chem. С 119 (2015) 5687-5696.

4. Голубев H.B., Игнатьева E.C., Сигаев В.Н., Лоренци Р., Палеари А. Патент РФ 2604614.

Похожие патенты RU2674667C1

название год авторы номер документа
ЛЮМИНЕСЦИРУЮЩИЙ СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ 2015
  • Голубев Никита Владиславович
  • Игнатьева Елена Сергеевна
  • Сигаев Владимир Николаевич
  • Лоренци Роберто
  • Палеари Альберто
RU2604614C1
СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ 2012
  • Голубев Никита Владиславович
  • Игнатьева Елена Сергеевна
  • Савинков Виталий Иванович
  • Сигаев Владимир Николаевич
  • Саркисов Павел Джибраелович
RU2494981C1
СПОСОБ ЛОКАЛЬНОЙ НАНОКРИСТАЛЛИЗАЦИИ ГАЛЛИЙСОДЕРЖАЩИХ ОКСИДНЫХ СТЕКОЛ 2013
  • Лотарёв Сергей Викторович
  • Липатьев Алексей Сергеевич
  • Голубев Никита Владиславович
  • Игнатьева Елена Сергеевна
  • Присеко Юрий Степанович
  • Лепёхин Николай Михайлович
  • Сигаев Владимир Николаевич
RU2550622C1
ЛЮМИНЕСЦИРУЮЩАЯ НАНОСТЕКЛОКЕРАМИКА 2014
  • Рачковская Галина Евтихиевна
  • Захаревич Галина Борисовна
  • Юмашев Константин Владимирович
  • Лойко Павел Александрович
  • Скопцов Николай Александрович
  • Арзуманян Григорий Макичевич
RU2579056C1
ЛЮМИНЕСЦИРУЮЩИЙ СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ 2020
  • Сигаев Владимир Николаевич
  • Наумов Андрей Сергеевич
  • Савинков Виталий Иванович
  • Лотарев Сергей Викторович
RU2756886C1
Ап-конверсионно люминесцирующая наностеклокерамика 2017
  • Рачковская Галина Евтихиевна
  • Захаревич Галина Борисовна
  • Вилейшикова Елена Владимировна
  • Кичанов Сергей Евгеньевич
  • Козленко Денис Петрович
RU2661946C1
Способ получения стеклокристаллического материала с наноразмерными кристаллами ниобатов редкоземельных элементов 2015
  • Жилин Александр Александрович
  • Дымшиц Ольга Сергеевна
  • Алексеева Ирина Петровна
  • Запалова Светлана Сергеевна
RU2616648C1
Ап-конверсионно люминесцирующая наностеклокерамика 2016
  • Рачковская Галина Евтихиевна
  • Захаревич Галина Борисовна
  • Лойко Павел Александрович
  • Вилейшикова Елена Владимировна
  • Юмашев Константин Владимирович
RU2636997C1
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКОГО СИТАЛЛА 2014
  • Сигаев Владимир Николаевич
  • Савинков Виталий Иванович
  • Строганова Елена Евгеньевна
  • Игнатов Александр Николаевич
RU2569703C1
СПОСОБ ЛОКАЛЬНОЙ МИКРОКРИСТАЛЛИЗАЦИИ ОКСИДНЫХ СТЕКОЛ 2015
  • Лотарев Сергей Викторович
  • Липатьев Алексей Сергеевич
  • Липатьева Татьяна Олеговна
  • Присеко Юрий Степанович
  • Лепёхин Николай Михайлович
  • Сигаев Владимир Николаевич
  • Курина Алёна Игоревна
RU2579077C1

Иллюстрации к изобретению RU 2 674 667 C1

Реферат патента 2018 года ЛЮМИНЕСЦИРУЮЩАЯ СТЕКЛОКЕРАМИКА

Изобретение относится к прозрачным стеклокристаллическим оксидным материалам. Люминесцирующая стеклокерамика, содержащая следующие компоненты, мас.%: Li2O 0,03-2,94; Na2O 0,06-5,77; Ga2O3 26,5-53,5; SiO2 9,9-17,3; GeO2 31,2-54,1; TiO2 сверх 100% 0,04-3,9. Технический результат заключается в получение прозрачной стеклокерамики на основе фазы γ-Ga2O3, спектральное распределение свечения которой близко к таковому для стандартных источников света серии «D». 5 пр., 2 табл., 3 ил.

Формула изобретения RU 2 674 667 C1

Люминесцирующая стеклокерамика, включающая Li2O, Na2O, Ga2O3, SiO2, GeO2 и TiO2 при следующем соотношении компонентов (мас.%):

Li2O 0,03-2,94 Na2O 0,06-5,77 Ga2O3 26,5-53,5 SiO2 9,9-17,3 GeO2 31,2-54,1 TiO2 0,04-3,9 сверх 100%

Документы, цитированные в отчете о поиске Патент 2018 года RU2674667C1

СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ 2012
  • Голубев Никита Владиславович
  • Игнатьева Елена Сергеевна
  • Савинков Виталий Иванович
  • Сигаев Владимир Николаевич
  • Саркисов Павел Джибраелович
RU2494981C1
ЛЮМИНЕСЦИРУЮЩИЙ СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ 2015
  • Голубев Никита Владиславович
  • Игнатьева Елена Сергеевна
  • Сигаев Владимир Николаевич
  • Лоренци Роберто
  • Палеари Альберто
RU2604614C1
US 6271160 B1, 07.08.2001
US 20060231737 A1, 19.10.2006
МАГНИТОКАЛОРИЧЕСКАЯ ИЛИ ЭЛЕКТРОКАЛОРИЧЕСКАЯ НАНОКРИОГЕННАЯ СИСТЕМА 2004
  • Карагусов Владимир Иванович
  • Тятюшкин Николай Васильевич
  • Карагусова Елена Евгеньевна
RU2289768C2

RU 2 674 667 C1

Авторы

Игнатьева Елена Сергеевна

Голубев Никита Владиславович

Лоренци Роберто

Палеари Альберто

Сигаев Владимир Николаевич

Даты

2018-12-12Публикация

2017-12-18Подача