СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ Российский патент 2018 года по МПК H01M4/04 H01M4/94 

Описание патента на изобретение RU2674748C1

Изобретение относится к области электрохимии, а именно к изготовлению конструкционных элементов водородных насосов и топливных элементов, конкретно к изготовлению водородных электродов.

Актуальной задачей развития альтернативной энергетики является разработка кислородно-водородного топливного элемента с цельнометаллическим палладийсодержащим водородопроницаемым водородным электродом, работающих при низких (20-100°C) температурах. Это позволит использовать в топливном элементе жидкий электролит и приведет (за счет изменения трехфазной границы газ - металл токоотвода - электролит на двухфазную палладиевый сплав - электролит) к улучшению вольтамперных характеристик элемента, снижению поляризации, уменьшению внутреннего сопротивления и к увеличению удельной мощности. Кроме того, палладий является катализатором электродного процесса по всей двухфазной границе, поэтому не требуется дополнительного нанесения катализатора. Также возможно применение водородного электрода в составе двухэлектродной ячейки с протоносодержащим электролитом в составе водородного насоса или компрессора [К.А. Джусь, И.Г. Штатный, С.А. Григорьев / Наноструктурные электрокатализаторы для водородного компрессора с твердым полимерным электролитом // Вестник МИТХТ Химия и технология неорганических материалов», 2009, т. 4, №6 (90)].

Палладий и его сплавы применяют для получения мембран, способных пропускать газообразный водород [Rothenberger K.S., Cugini A.V., Howard В.Н., Killmeyer R.P., Ciocco M.V., Morreale B.D. // Journal of Membrane Science. 2004. V. 244. P. 55-68.]. Такие мембраны имеют рабочие температуры в интервале 200-800°C, так как в первую очередь предназначены для разделения высокотемпературных водородных смесей, получаемых пирогенетическими методами из органических водородосодержащих топлив. Из-за их высокой проницаемости и селективности по сравнению с другими материалами металлические водородопроводящие мембраны при высоких температурах остаются предметом интенсивных исследований. Легирование палладия влияет на диффузию водорода внутри мембраны, на скорость растворения и выделения атомов водорода, на рекомбинацию и диссоциацию молекул и, в меньшей степени, на адсорбцию и десорбцию.

Основными характеристиками палладиевых мембран для выделения водорода из газовых смесей являются скорость проникновения водорода через мембрану, ее прочность и стойкость при эксплуатации. Для мембраны же выполняющей роль диффузионного электрода добавляется важная характеристика скорость электроэкстракции растворенного водорода на границе мембрана / электролит.

Процесс водородопроницаемости палладия и его сплавов состоит из трех основных стадий [Байчток Ю.К., Соколинский Ю.А., Айзенбуд М.Б. / О лимитирующей стадии проницаемости водорода через мембраны из палладиевых сплавов // Журнал физической химии. 1976. Т. 50. N 6. С. 1543-1546.]:

- диссоциация водорода на входной поверхности мембраны, протекающая со скоростью νi,

- диффузия атомарного водорода через мембрану, протекающая со скоростью νД,,

- рекомбинация атомов водорода в молекулы на выходной стороне мембраны, протекающая со скоростью νо.

Лимитирование той или иной стадии является предметом многочисленных исследований и зависит от многих факторов, например в случае особо чистого водорода лимитирующей является стадия диффузии, а в случае незначительных примесей серы, углеводородов и т.д. лимитирующими становятся стадии диссоциации на газовой стороне мембраны и(или) электроэкстракции на электролитной стороне. Последний случай является наиболее вероятным для патентуемого мембранного электрода, так как он будет работать не на чистом водороде. В таких условиях повысить скорость переноса водорода через мембрану можно модификацией поверхности палладиевой мембраны специальными «водородными переносчиками», повышающими скорости диффузии водорода на газовой стороне мембранного электрода и электроэкстракции на электролитной стороне.

Уровень техники мембранных металлических электродов представлен рядом американских патентов: US Patents №№7,955,491; 9044715; 8778058; 8119205; 7611565; 7255721; 7022165; 9246176; RU на изобретения №№2256981; 2334310, 1840848, 2624012,2577860, на полезную модель №74242.

Наиболее близким техническим решением к заявляемому является патент [RU №2624012 Способ изготовления водородного электрода для кислородно-водородных топливных элементов]. Согласно прототипу заявлен способ изготовления водородного электрода для кислородно-водородного топливного элемента, путем закрепления на пористой металлической никелевой основе методом контактной точечной сварки тонкой палладиевой мембраны толщиной 1-30 мкм, покрытой с двух сторон слоем мелкодисперсной палладиевой черни.

Основным недостатком описанного способа является то, что при его осуществлении из-за высоких затрат драгоценного металла как палладий - металла с высокой рыночной стоимостью, метод производства водородного электрода, а также изделий на его основе, например водородного насоса и низкотемпературного топливного элемента, дорогостоящий и низко экономичный.

Технической задачей является создание способа изготовления композитного водородного электрода для кислородно-водородных топливных элементов, позволяющего изготавливать изделие более экономично за счет снижения в нем драгоценного металла палладия в 4-500 раз.

Указанная техническая задача решается за счет изготовления мембраны электрода в виде композита (сэндвича) из трех сплошных слоев, при этом только внешние тонкие слои изготовлены из палладия или его сплавов, что снижает содержание в устройстве дорогостоящего палладия

Для решения технической задачи предлагается изготавливать водородный электрод для кислородно-водородного топливного элемента, путем закрепления на пористой металлической никелевой основе методом контактной точечной сварки тонкой палладиевой мембраны толщиной 1-30 мкм, покрытой с двух сторон слоем мелкодисперсной палладиевой черни. При этом мембрану изготавливают послойно в виде тонкой трехслойной композитной пленки, внутренний слой которой изготавливают из металла хорошо растворяющего водород, такого как уран, торий, церий, титан, ванадий или тантал, а наружные слои - из палладия или его сплавов, при этом соотношение толщины внутреннего и суммарной толщины наружных слоев составляет 4:1-500:1.

На фиг. 1 изображен водородный электрод из тонкой модифицированной композитной металлической пленки, изготовленный предлагаемым способом, на фиг. 2 - мембрана из тонкой трехслойной композитной модифицированной пленки, а на фиг. 3 - водородный насос, выполненный из двух заявляемых электродов фильтр-прессной сборки.

Электрод, изготовляемый заявленным способом (фиг. 1) включает композитную мембрану 1 выполненную в виде трехслойной фольги толщиной 2-50 мкм. На обе стороны мембраны 1 нанесен слой мелкодисперсной (наноразмерной) палладиевой черни 2. Композитная фольга 1, с одной стороны методом контактной точечной сварки - точки 3, закреплена на поверхности пористой металлической никелевой основы 4. Основа 4 электрически контактирует с металлической газораспределительной плитой 5. В объеме и на поверхности плиты 5 со стороны мембраны 1 сформирована система газораспределительных (продувочных) каналов 6 оканчивающаяся концевыми газовыми штуцерами 7 с кранами. Водородный насос (фиг. 3) составлен из двух водородных электродов (фиг. 1) соединенных в конструкцию четырьмя металлическими шпильками 8 при помощи гаек 9. матричный электролит - 10, разделяет водородные электроды (фиг. 1).

Мембрану (фиг. 2) можно изготавливать путем последовательного магнетронного напыления в вакууме первого слоя палладия или палладиевого сплава 2 толщиной 0,1-0,5 мкм, дальнейшего напыления на него второго - внутреннего слоя металла 1, выбранного из ряда: уран, торий, церий, титан, ванадий или тантал толщиной 2-50 мкм и заключительного напыления третьего внешнего слоя палладия или палладиевого сплава 2 толщиной 0,1-0,5 мкм., с последующим двусторонним покрытием обеих палладиевых поверхностей наноразмерным металлическим порошком из палладиевой черни 3 и соединением трехслойной композитной модифицированной пленки с пористой металлической, например никелевой основой, путем точечной контактной сварки. Покрытие дисперсным металлом можно осуществлять его химическим восстановлением из водных растворов солей; электролитическим осаждением из водных растворов солей палладия; магнетронным напылением пленки сплава Ренея с последующим диффузионным спеканием полученного «сэндвича» и вытравливанием неактивного компонента из поверхности пленки, а в качестве мелкодисперсного металла покрытия мембраны использовать металл группы «переносчиков водорода», т.е. из ряда металлов 4d, 5d, 6d элементов периодической системы Менделеева.

Изготовление на основе двух вышеприведенных электродов водородного насоса (топливного элемента) фиг. 3 производится так. Два водородных электрода, представленных на фиг. 1 приводятся в контакт друг с другом со стороны противоположной металлическим плитам 5 в процессе механической стяжки фильтр-прессной конструкции водородного насоса или топливного элемента при помощи четырех шпилек 8 и гаек 9. При этом слои мелкодисперсной палладиевой черни 2 контактируют через матричный электролит 10, представляющий собой слой асбестовой бумаги, пропитанной 33% раствором электролита, например NaOH, таким образом, чтобы мелкодисперсное покрытие на электролитной стороне служило электрокатализатором электродного процесса окисления и восстановления водорода. Путем открытия кранов на концевых газовых штуцерах 7 осуществляется продувка системы газораспределительных каналов 6 и пор пористых никелевых пластин 4 водородом. Через определенное время, когда в системе газораспределительных каналов 6 и порах пористой никелевой пластины остается чистый водород, один из кранов выходного штуцера 7 левого электрода закрывается и система переходит в рабочий режим. Водород, поступающий через поры пористой никелевой пластины 4, расположенной слева, подается к газовой поверхности левой композитной палладийсодержащей мембраны 1 покрытой палладиевой чернью, которая хемосорбирует водород на поверхности своих частиц и ускоряет его поступление в объем композитной палладийсодержащей мембраны - абсорбцию. Далее абсорбированный водород диффундирует через фазу палладия и на электролитной поверхности покрытой палладиевой чернью переходит в адсорбированную атомную фазу. Затем адсорбированный водород вступает в электродную реакцию на границе палладиевая чернь/электролит с образованием протонсодержащих частиц в электролите 10 и отдачей электронов во внешнюю цепь на нагрузку через металлическую плиту 5, которая также является токоотводом. С правой стороны процессы симметрично электрохимически обращаются и их конечным результатом является образование в системе газораспределительных каналов 6 правого электрода который может накапливаться до определенных давлений (водородный компрессор) или использоваться потребителем в более чистом виде (водородный насос). Кислородно (воздушно)-водородный топливный элемент может быть сконструирован аналогично, путем замены правого водородного электрода на кислородный (воздушный) электрод.

Пример изготовления заявляемого электрода.

Подготавливали подложку для напыления из легкорастворимого химически чистого металла, например Zn. В установке магнетронного напыления устанавливали составную мишень для напыления сплавов [RU 143793 «Мишень для магнетронного напыления металлических сплавов»] из дисков химически чистых цинка и палладия и напыляли в вакууме 10-6 Bar на подложку сплав Zn(50%) - Pd (50%) толщиной 0,1-0,2 мкм, меняли мишень и напыляли сплав Ag (25%) - Pd (75%) толщиной 0,1-0,5 мкм, мишень заменяли на химически чистый тантал и напыляли основной слой тантала толщиной 2-50 мкм, меняли мишень и напыляли сплав Ag (25%) - Pd (75%) толщиной 0,1-0,5 мкм, последний раз меняли мишень и напыляли сплав Zn(50%) - Pd(50%) толщиной 0,1-0,2 мкм. Полученную пленку из пяти слоев на цинковой подложке травили в разбавленном 0,5М растворе гидроксида натрия до полного вытравливания цинка подложки, а затем в концентрированном растворе гидроксида натрия 5-6 М до образования на внешних поверхностях трехслойной пленки палладиевой черни. Затем покрытую и высушенную на воздухе композитную фольгу накладывали одной стороной на пористую металлическую основу, например никелевую, после чего сваривали их по поверхности точечной контактной сваркой во многих точках.

Изготовление мембраны в качестве композитной пленки содержащей более толстый слой основного дешевого металла, который в 4-500 раз толще наружных слоев палладия или его сплава позволяет за счет уменьшения общего содержания дорогостоящего палладия в металлической мембране в 4-500 раз значительно повысить экономичность способа при сохранении общей водородопроницаемости мембраны предлагаемого водородного электрода топливного кислородно-водородного элемента и(или) водородного насоса, что позволяет резко снизить стоимость водородного насоса и кислородно-водородных топливных элементов, то есть расширить сферу их применения, которая сейчас сдерживается в основном невысокой экономичностью технологии их производства.

Похожие патенты RU2674748C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ 2016
  • Фролов Владимир Юрьевич
  • Болотин Сергей Николаевич
  • Ломакина Лариса Владимировна
  • Барышев Михаил Геннадьевич
  • Петриев Илья Сергеевич
RU2624012C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ 2018
  • Фролов Владимир Юрьевич
  • Петриев Илья Сергеевич
  • Барышев Михаил Геннадьевич
  • Джимак Степан Сергеевич
  • Калинчук Валерий Владимирович
  • Ломакина Лариса Владимировна
RU2694431C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ, МОДИФИЦИРОВАННОГО НАНОСТРУКТУРИРОВАННЫМ ПАЛЛАДИЕМ 2019
  • Петриев Илья Сергеевич
  • Фролов Владимир Юрьевич
  • Ломакина Лариса Владимировна
  • Пушанкина Полина Дмитриевна
  • Воронин Кирилл Александрович
  • Луценко Иван Сергеевич
  • Калинчук Валерий Владимирович
  • Барышев Михаил Геннадьевич
  • Джимак Степан Сергеевич
RU2724609C1
ВОДОРОДНЫЙ ЭЛЕКТРОД ИЗ ТОНКОЙ ПАЛЛАДИЕВОЙ ПЛЕНКИ 1965
  • Степанов Геннадий Константинович
  • Клевцов Лев Петрович
  • Архипов Глеб Георгиевич
SU1840848A1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАНЫ ДЛЯ ВЫДЕЛЕНИЯ ВОДОРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ 2012
  • Лившиц Александр Иосифович
  • Ноткин Михаил Евсеевич
  • Алимов Василий Николаевич
  • Буснюк Андрей Олегович
RU2521382C1
МЕМБРАНА ДЛЯ ОТДЕЛЕНИЯ ВОДОРОДА 2014
  • Заглядова Светлана Вячеславовна
  • Маслов Игорь Александрович
RU2579397C1
КОМПОЗИТНАЯ МЕМБРАНА ДЛЯ ВЫДЕЛЕНИЯ ВОДОРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ 2014
  • Лившиц Александр Иосифович
  • Ноткин Михаил Евсеевич
  • Алимов Василий Николаевич
  • Буснюк Андрей Олегович
RU2568989C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МЕМБРАН НА ОСНОВЕ ТОНКИХ ПЛЕНОК МЕТАЛЛОВ 2008
  • Иевлев Валентин Михайлович
  • Белоногов Евгений Константинович
  • Максименко Александр Александрович
  • Рошан Наталья Робертовна
  • Бурханов Геннадий Сергеевич
RU2381055C2
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПРОНИЦАЕМОЙ МЕМБРАНЫ И ГАЗОПРОНИЦАЕМАЯ МЕМБРАНА 2007
  • Бобыль Александр Васильевич
  • Забродский Андрей Георгиевич
  • Конников Семен Григорьевич
  • Саксеев Дмитрий Андреевич
  • Солдатенков Федор Юрьевич
  • Терещенко Геннадий Федорович
  • Теруков Евгений Иванович
  • Улин Владимир Петрович
RU2335334C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МЕМБРАН НА ОСНОВЕ ТОНКИХ ПЛЕНОК МЕТАЛЛОВ 2015
  • Иевлев Валентин Михайлович
  • Максименко Александр Александрович
  • Максименко Владимир Александрович
  • Донцов Алексей Игоревич
  • Рошан Наталья Робертовна
  • Бурханов Геннадий Сергеевич
  • Чистов Евгений Михайлович
RU2644640C2

Иллюстрации к изобретению RU 2 674 748 C1

Реферат патента 2018 года СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Способ изготовления водородного электрода для кислородно-водородного топливного элемента относится к области электрохимии, а именно к изготовлению конструкционных элементов водородных насосов и топливных элементов, конкретно к изготовлению водородных электродов. Он включает закрепление на пористой металлической никелевой основе методом контактной точечной сварки тонкой палладийсодержащей мембраны толщиной 1-30 мкм, покрытой с двух сторон слоем мелкодисперсной палладиевой черни. При этом мембрану изготавливают послойно в виде тонкой трехслойной композитной пленки, внутренний слой которой изготавливают из металла, хорошо растворяющего водород, такого как уран, титан, торий, церий, ванадий или тантал толщиной 2-50 мкм, а наружные слои - из палладия или его сплавов толщиной 0,1-0,5 мкм. Изобретение позволяет снизить содержание драгоценного металла - палладия. 3 ил.

Формула изобретения RU 2 674 748 C1

Способ изготовления водородного электрода для кислородно-водородного топливного элемента путем закрепления на пористой металлической никелевой основе методом контактной точечной сварки тонкой палладиевой мембраны толщиной 1-30 мкм, покрытой с двух сторон слоем мелкодисперсной палладиевой черни, отличающийся тем что мембрану изготавливают последовательно слоями, формирующими тонкую трехслойную композитную пленку, при этом внутренний слой формируют из металла, хорошо растворяющего водород, такого как уран, торий, церий, титан, ванадий или тантал толщиной 2-50 мкм, а наружные слои формируют из палладия или его сплавов толщиной 0,1-0,5 мкм.

Документы, цитированные в отчете о поиске Патент 2018 года RU2674748C1

СПОСОБ ИЗГОТОВЛЕНИЯ ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ 2016
  • Фролов Владимир Юрьевич
  • Болотин Сергей Николаевич
  • Ломакина Лариса Владимировна
  • Барышев Михаил Геннадьевич
  • Петриев Илья Сергеевич
RU2624012C1
СПОСОБ ЗАЩИТЫ ОТ ОКИСЛЕНИЯ БИПОЛЯРНЫХ ПЛАСТИН И КОЛЛЕКТОРОВ ТОКА ЭЛЕКТРОЛИЗЕРОВ И ТОПЛИВНЫХ ЭЛЕМЕНТОВ С ТВЕРДЫМ ПОЛИМЕРНЫМ ЭЛЕКТРОЛИТОМ 2015
  • Никитин Сергей Михайлович
  • Порембский Владимир Игоревич
  • Акелькина Светлана Владимировна
  • Фатеев Владимир Николаевич
  • Алексеева Ольга Константиновна
RU2577860C1
0
  • Г. А. Петропавловский, Г. Г. Васильева, М. Б. Гершман А. Н. Марасанова
SU168869A1
US 20150325861 A1, 12.11.2015.

RU 2 674 748 C1

Авторы

Петриев Илья Сергеевич

Фролов Владимир Юрьевич

Барышев Михаил Геннадьевич

Калинчук Валерий Владимирович

Ломакина Лариса Владимировна

Елкина Анна Анатольевна

Болотин Сергей Николаевич

Даты

2018-12-13Публикация

2017-09-20Подача