Настоящее изобретение относится к области водородной энергетики, выделения водорода из газовых смесей, получения особо чистого водорода.
Резкое увеличение потребления водорода, происходящее в настоящее время, связано, в частности, с особой ролью, которая отводится прямому, минуя тепловой цикл, преобразованию химической энергии водорода в электричество с помощью топливных элементов (автомобили, подводные лодки, ноутбуки, «умные» дома и т.д.), для работы которых требуется водород с чистотой не хуже 99.999%.
Большую часть водорода производят сейчас и будут производить в ближайшем будущем с помощью риформинга органического сырья, в результате которого образуется газовая смесь, содержащая водород. Критическая стадия процесса - выделение из получаемой газовой смеси чистого водорода.
Признано, что наиболее эффективным способом выделения чистого водорода является его диффузионная очистка с помощью различного типа металлических мембранных фильтров, подавляющее большинство которых на сегодняшний день изготавливают на основе палладия и его сплавов.
Известно, например, техническое решение (см. [1] патент на изобретение РФ №2416460, М. кл. B01D 63/00, 63/08, 72/02, опубл. 20.04.2011 г.), в котором запатентованы водородопроницаемая мембрана, фильтрующий элемент и мембранный аппарат. При этом водородопроницаемая плоская мембрана выполнена на основе палладиевого сплава с рельефной наружной поверхностью с чередующимися выступами и окружающими каждый выступ впадинами, отличающаяся тем, что палладиевый сплав содержит один или несколько элементов из Iб, III, IV и VIII групп Периодической системы элементов, а отношение максимальной длины L дуги на поверхности выступов в их поперечном сечении к длине D ее проекции на площадь основания находится в пределах от 1,05 до 1+δ, где δ - пластичность материала мембранного сплава. Известное техническое решение предназначено для выделения водорода из газовых смесей.
Несмотря на высокую степень совершенства известного технического решения и высокую чистоту выделяемого с его помощью водорода, оно сохраняет недостатки, свойственные мембранам, изготовленным на основе палладия и его сплавов:
- высокую стоимость устройства, связанную с использованием в качестве основного материала мембран сплава драгоценного металла - палладия,
- недостаточную для ряда приложений производительность выделения водорода, что объясняется неудовлетворительными термодинамическими характеристиками сплавов палладия в отношении растворения/пропускания водорода,
- ограниченный срок службы и невысокую надежность из-за возникновения в материале мембраны микротечей в процессе термо- и водородоциклирования.
С другой стороны, известно, что переходные металлы 5-й группы Периодической системы элементов (ванадий, ниобий и тантал) обладают более высокой проницаемостью по отношению к водороду, чем палладий и палладий-серебряные сплавы, благодаря уникальному сочетанию большой теплоты растворения и большой скорости междоузельной диффузии растворенного в металле водорода (намного большей, чем в случае палладия). Металлы 5-й группы, в особенности ванадий и ниобий, также намного дешевле и доступнее, чем палладий, обладают хорошими механическими свойствами и легко обрабатываются (в частности, обладают хорошей дуктильностью, позволяющей получать тонкие фольги методом проката). Однако использование благоприятных характеристик этих металлов в известной мере затруднено из-за высокой химической активности их поверхности, которая обычно покрыта плотными пленками окислов, быстро образующимися при взаимодействии с воздухом, парами воды и т.п. Оксидные пленки радикально снижают скорости растворения и выделения водорода через поверхность металла, делая мембраны из этих металлов малопроницаемыми для водорода.
Указанная проблема преодолевается путем нанесения тонких слоев палладия (порядка микрона) на обе поверхности мембраны из металла 5-й группы. Такая композитная мембрана, состоящая из сравнительно толстого (доли мм) ванадия, ниобия или тантала или их сплавов и двух тонких палладиевых покрытий (толщиной в доли мкм) на обеих поверхностях мембраны, позволяет удачно объединить благоприятные свойства обоих металлов: высокую проницаемость по водороду основного металла и высокие скорости растворения/выделения водорода сквозь не подверженную окислению, химически стойкую и стабильную поверхность благородного металла палладия.
Известно техническое решение «Высокопроизводительные мембраны цилиндрической формы, покрытые палладием» (Palladium coated high-flux tubular membranes) (см. [2] патент Канады CA №2249126, М. кл. B01D 53/22, опубл. 02.04.2000 г.), представляющее собой композитную мембрану, имеющую наружную и внутреннюю поверхности цилиндрической формы, изготовленную из ниобия, тантала, ванадия или других металлов, обладающих необходимыми характеристиками для проникновения водорода. При этом цилиндрическая мембрана может быть изготовлена из непалладиевых материалов и покрыта тонким слоем палладия как на внутренней, так и на наружной поверхности.
Известное техническое решение предназначено для выделения водорода из газовых смесей. Следует, однако, отметить малый ресурс его работы и непрерывное уменьшение производительности выделения водорода мембраной в процессе ее эксплуатации в атмосфере газовых смесей, содержащих водород, происходящих из-за низкой термической стабильности работы защитно-каталитического покрытия. Наблюдаемые процессы происходят из-за ухудшения каталитических (адсобционно/десорбционных) свойств палладиевого покрытия. Одна из причин заключается в интердиффузии материала покрытия и основного материала мембраны при рабочих температурах, что приводит к появлению на поверхности мембраны металлов 5-й группы и их соединений и к отравлению каталитических свойств поверхности.
Известно также техническое решение «Мембрана для выделения водорода из газовых смесей» (см. [3] патент на полезную модель РФ №129416, М. кл. B01D 53/22, 63/00, 63/08, C01B 3/01, 3/16, опубл. 27.06.2013 г.), представляющее собой композитную мембрану на основе таких металлов 5-й группы Периодической системы элементов Менделеева, как ниобий, ванадий, тантал и их сплавов, с покрытием из палладия или его сплавов с обеих ее сторон, причем между основным материалом мембраны и палладиевым покрытием расположен барьерный слой материала, выполненный из карбида металла 5-й группы, служащего основным материалом мембраны, или из карбида ванадия, или из карбида ниобия, или из карбида тантала, или из карбида металла, не входящего в состав основного материала мембраны или покрытия, например карбида молибдена.
Известное техническое решение предназначено для выделения водорода из газовых смесей и решает задачу увеличения термической стабильности защитно-каталитического покрытия путем подавления процесса интердиффузии основного материала мембраны и материала покрытия. Однако и это известное техническое решение не решает задачу радикального увеличения термической стабильности защитно-каталитического покрытия. Причина этого связана с разрушением защитно-каталитического покрытия из палладия или его сплавов, выражающееся в появлении трещин и отслаивании материала покрытия от основного материала в процессе работы при высоких давлениях водорода и высоких температурах. Это происходит в результате различного расширения основного материала мембраны и материала защитно-каталитического покрытия при высоких концентрациях растворенного в них водорода (явление дилатации).
За прототип выбрано устройство, описанное в [3].
Достигаемым результатом предлагаемого технического решения является увеличение термической стабильности работы покрытия.
Достижение указанного результата обеспечивается в предлагаемой композитной мембране для выделения водорода из газовых смесей на основе сплавов металлов 5-й группы Периодической системы друг с другом или с другими металлами с защитно-каталитическим покрытием на поверхности мембраны из палладия или сплавов палладия, отличающейся тем, что в качестве материала мембраны выбран материал с растворимостью водорода такой же, как у материала покрытия, либо отличающейся не более чем на 15%.
При этом материал мембраны может быть выполнен из сплава V-18.8Pd, а защитно-каталитическое покрытие на поверхности мембраны будет при этом выполнено из чистого палладия, или материал мембраны может быть выполнен из сплава V-19Ni, а защитно-каталитическое покрытие на поверхности мембраны будет при этом выполнено из чистого палладия.
Достижение указанного технического результата приведенными выше отличиями заключается в следующем.
В процессе проникновения/выделения водорода сквозь водородопроницаемые мембраны происходит его растворение как в материале мембраны, так и в материале защитно-каталитического покрытия на ее поверхности. Концентрация растворенного водорода зависит от температуры мембраны, давления водорода над мембраной и подчиняется закону Сивертса. Растворение водорода в кристаллической решетке металла сопровождается ее расширением (так называемая водородная дилатация), которое определяется концентрацией растворенного водорода. Причем расширение вследствие явления дилатации по своей величине существенно превосходит термическое расширение. В результате материал мембраны и материал поверхностного защитно-каталитического покрытия расширяются в разной степени, что вызывает сильные внутренние напряжения, приводящие к деградации механических свойств покрытия, заключающиеся в нарушении целостности защитно-каталитического покрытия и обнажении части подложки (так называемая коалесценция). При этом на поверхности мембраны вместо защитно-каталитического покрытия оказывается основной материал мембраны: сплав металлов 5-й группы Периодической таблицы элементов Менделеева ниобий, тантал или ванадий, которые в силу высокой химической активности своей поверхности активно вступают в реакцию с компонентами газовой смеси с образованием оксидных соединений, практически непроницаемых для водорода. Это приводит к механическому разрушению покрытия и деградации его защитно-каталитических свойств, что наблюдается в известных технических решениях. Причем особенно интенсивно эти процессы происходят в условиях многократного термоводородного циклирования, то есть многократного нагрева/охлаждения мембраны в процессе взаимодействия с водородом высокого давления.
Для устранения этого негативного эффекта в предлагаемом техническом решении в качестве материала мембраны выбран материал с растворимостью водорода такой же, как у материала покрытия, либо отличающейся не более чем на 15%.
При этом дилатационное расширение материала мембраны и материала защитно-каталитического покрытия оказываются близкими, внутренние напряжения не возникают и свойства защитно-каталитического покрытия не ухудшаются в процессе термо- и водородоциклирования.
Осуществимость предлагаемого технического решения продемонстрирована на фиг. 1 и 2, на которых представлена зависимость величины относительного коэффициента Сивертса для материалов мембраны и защитно-каталитического покрытия от элементного состава этих материалов: на фиг. 1 для основного материала мембраны, в качестве которого выбран сплав V-18.8Pd, и защитно-каталитического покрытия из чистого палладия и на фиг.2 для основного материала мембраны, в качестве которого выбран сплав V-19Ni, и защитно-каталитического покрытия из чистого палладия.
Коэффициент (константа равновесия) Сивертса устанавливает связь между давлением водорода над мембраной и его концентрацией в металле и равняется
где С - концентрация растворенного в материале водорода,
Р - давление водорода над мембраной.
Поскольку в нашем случае давление водорода над мембраной одинаково как для материала мембраны, так и для материала защитно-каталитического покрытия, равенство коэффициентов Сиверса в обоих материалах означает одинаковую концентрацию растворенного в них водорода.
Как следует из данных фиг. 1 и 2, во всех представленных сочетаниях основного материала мембраны и защитно-каталитического покрытия имеется область элементного состава основного материала мембраны, для которого коэффициент Сивертса такой же, как у материала защитно-каталитического покрытия, либо отличается не более чем на 15%, а именно это сплав ванадия с палладием с содержанием палладия ~18.8% (фиг. 1) или сплав ванадия с никелем с содержанием никеля ~19%.
Это означает, что для указанных сочетаний сплавов и защитно-каталитических покрытий концентрации водорода, растворенного в основном материале мембраны и в материале защитно-каталитического покрытия, оказываются приблизительно равными и, следовательно, внутренние напряжения, вызванные эффектами дилатации, сведены к минимуму.
Для подтверждения приведенных выше теоретических представлений было проведено экспериментальное сравнение морфологии (состояния поверхности) защитно-каталитического покрытия ванадиевой мембраны в исходном (после нанесения защитно-каталитического палладиевого покрытия) состоянии и после 68-ти циклов растворения - десорбции водорода с аналогичными данными для композитной мембраны на основе сплава ванадия V-18.8Pd с палладиевым защитно-каталитическим покрытием - см. фиг. 3.
На фиг. 3 приведены полученные с помощью сканирующего электронного микроскопа фотографии образцов мембран из ванадия и из сплава V-18.8Pd толщиной 100 мкм с плазменным напылением защитно-каталитического покрытия из палладия толщиной порядка 1.5 мкм. А именно: на фиг. 3а показана поверхность защитно-каталитического покрытия палладия, нанесенного плазменным методом на ванадиевую мембрану до начала экспериментов, а на фиг. 3б показан тот же образец после 68 термоводородных циклов, заключавшихся в растворении и десорбции водорода мембраной. На фиг. 3б видны значительные изменения морфологии покрытия, в том числе образование не покрытых участков поверхности мембраны (черные участки на фиг. 3б), хорошо заметные на фоне однородной поверхности в начальном состоянии (фиг. 3а).
На фиг. 3в показана поверхность защитно-каталитического покрытия палладия, нанесенного плазменным методом на мембрану из сплава V-18.8Pd до начала экспериментов, а на фиг. 3г показан тот же образец после 68 термоводородных циклов. Как видно из сравнения фиг. 3в и фиг. 3г, состояние поверхности защитно-каталитического покрытия после проведенного цикла испытаний практически не изменилось, что указывает на радикальное увеличение стабильности работы покрытия, достигаемой в результате использования предлагаемого технического решения.
На фиг. 4 представлены аналогичные результаты исследования состояния химически нанесенного палладиевого защитно-каталитического покрытия толщиной 1.5 мкм на поверхности композитной мембраны V-19Ni до и после термоводородного циклирования. Как следует из сравнения представленных данных, защитно-каталитическое покрытие остается практически неизменным.
Пример реализации предлагаемого технического устройства приведен на фиг. 5, где представлена композитная плоская мембрана для выделения водорода из газовых смесей. На фиг. 5 показаны: основной материал мембраны, 1, на обеих сторонах которой расположено защитно-каталитическое покрытие 2.
Устройство работает следующим образом. На входную поверхность мембраны подается смесь газов, содержащих водород. Благодаря каталитическим свойствам палладиевого покрытия на входной поверхности мембраны водород абсорбируется палладием. Все остальные газы смеси не вступают во взаимодействие с поверхностью мембраны и, соответственно, мембрана их не абсорбирует. Абсорбированный мембраной водород диффундирует сквозь нее, последовательно проходя сквозь защитно-каталитическое покрытие на входе, толщу мембраны и защитно-каталитическое покрытие на ее выходе, с поверхности которого он десорбируется, как это показано на фиг. 5.
Реализация предлагаемого устройства может быть осуществлена с помощью известных технологических процессов. На прокат сплава металлов 5-й группы наносится защитно-каталитическое покрытие. Это может быть осуществлено как с помощью электрохимических методов нанесения, так и путем плазменного напыления (см. фиг. 3а).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАНЫ ДЛЯ ВЫДЕЛЕНИЯ ВОДОРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ | 2015 |
|
RU2587443C1 |
СПОСОБ ВЫДЕЛЕНИЯ ИЗОТОПОВ ВОДОРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ | 2015 |
|
RU2605561C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАНЫ ДЛЯ ВЫДЕЛЕНИЯ ВОДОРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ | 2012 |
|
RU2521382C1 |
МЕМБРАНА ДЛЯ ОТДЕЛЕНИЯ ВОДОРОДА | 2014 |
|
RU2579397C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАНЫ ДЛЯ ВЫДЕЛЕНИЯ АТОМОВ И ИОНОВ ВОДОРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ | 2015 |
|
RU2602104C1 |
КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ СВЕРХТОНКИХ МЕМБРАН | 2006 |
|
RU2403960C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ | 2017 |
|
RU2674748C1 |
Диффузионная мембрана | 1982 |
|
SU1272970A3 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПРОНИЦАЕМОЙ МЕМБРАНЫ И ГАЗОПРОНИЦАЕМАЯ МЕМБРАНА | 2007 |
|
RU2335334C1 |
Катализатор для удаления водорода из газовой смеси | 1989 |
|
SU1779224A3 |
Изобретение относится к области водородной энергетики, выделения водорода из газовых смесей, получения особо чистого водорода. Предложена композитная мембрана для выделения водорода из газовых смесей на основе сплавов металлов 5-й группы Периодической системы друг с другом с защитно-каталитическим покрытием на поверхности мембраны из палладия или сплавов палладия, при этом в качестве материала мембраны выбран материал с растворимостью водорода такой же, как у материала покрытия, либо отличающейся не более чем на 15%. При этом материал мембраны может быть выполнен из сплава V-18.8Pd, а защитно-каталитическое покрытие на поверхности мембраны будет при этом выполнено из чистого палладия, или материал мембраны может быть выполнен из сплава V-19Ni, а защитно-каталитическое покрытие на поверхности мембраны будет при этом выполнено из чистого палладия. Технический результат - увеличение термической стабильности работы покрытия. 2 з.п. ф-лы, 5 ил.
1. Композитная мембрана для выделения водорода из газовых смесей на основе сплавов металлов 5-й группы Периодической системы друг с другом с защитно-каталитическим покрытием на поверхности мембраны из палладия или сплавов палладия, отличающаяся тем, что в качестве материала мембраны выбран материал с растворимостью водорода такой же, как у материала покрытия, либо отличающейся не более чем на 15%.
2. Мембрана по п. 1, отличающаяся тем, что в качестве материала мембраны выбран сплав V-18.8Pd, а в качестве защитно-каталитического покрытия на поверхности мембраны выбран чистый палладий.
3. Мембрана по п. 1, отличающаяся тем, что в качестве материала мембраны выбран сплав V-19Ni, а в качестве защитно-каталитического покрытия на поверхности мембраны выбран чистый палладий.
СПОСОБ И УСТРОЙСТВО ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ ЗА СЧЕТ КОНВЕКЦИИ | 2000 |
|
RU2249126C2 |
СПОСОБ РАДИОЛОКАЦИОННОГО ОБЗОРА ПРОСТРАНСТВА (ВАРИАНТЫ) | 2015 |
|
RU2596851C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАНЫ ДЛЯ ВЫДЕЛЕНИЯ ВОДОРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ | 2012 |
|
RU2521382C1 |
US 7022165 B2, 04.04.2006 | |||
A Buxbaum, R.E.; Marker, T.L | |||
Hydrogen transport throughnon-porous membranes of palladium-coated niobium,tantalum and vanadium | |||
J | |||
M | |||
embr | |||
Sci | |||
Способ изготовления фанеры-переклейки | 1921 |
|
SU1993A1 |
Авторы
Даты
2015-11-20—Публикация
2014-07-01—Подача