СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ Российский патент 2018 года по МПК G21F9/04 

Описание патента на изобретение RU2675787C1

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО) и может быть использовано для утилизации радиоактивных сред на различных объектах атомной промышленности.

Данный способ может быть использован для переработки низко- и среднеактивных жидких радиоактивных отходов на различных объектах атомной промышленности, в том числе на атомных электростанциях; для переработки растворов, образующихся при дезактивации зданий, сооружений, оборудования, транспорта и т.д.; для переработки природной воды, загрязненной радионуклидами.

Переработка жидких радиоактивных отходов направлена на решение двух основных задач: очистка основной массы отходов от радионуклидов и концентрирование последних в минимальном объеме.

Известен способ переработки жидких радиоактивных отходов атомных электростанций, в котором солевые отходы подвергают озонированию и последующему отделению образующегося при окислении радиоактивного шлама (см. патент РФ на изобретение №2066493 «Способ обработки жидких радиоактивных отходов АЭС», 6 МПК G21F 9/08, приоритет от 13.11.1995 г., опубл. 10.09.1996 г.).

К недостаткам данного способа относятся невысокие коэффициенты очистки от радионуклидов, остающихся в жидкой фазе после окисления в ионном состоянии, а именно, от радионуклидов цезия.

Известен способ переработки жидких радиоактивных отходов, содержащих радионуклиды в ионной и коллоидной формах и балластные компоненты минеральной и органической природы в растворенном и взвешенном состояниях, заключающийся в том, что органические компоненты жидких радиоактивных отходов окисляют до газообразного состояния, а минеральные ионные компоненты, в том числе и радионуклиды, переводят во взвешенное состояние в виде гидроокисей металлов путем подачи в поток отходов озона, поток окисленных отходов разделяют на сгущенный шлам и жидкую фазу, на селективных сорбентах проводят доочистку жидкой фазы от оставшихся в ионной форме радионуклидов, а образовавшийся шлам и отработанные сорбенты переводят в твердую форму и отправляют на длительное хранение (см. патент РФ на изобретение №2122753 «Способ переработки жидких отходов, содержащих радионуклиды», 6 МПК G21F 9/06, приоритет от 30.10.1997 г., опубл. 27.11.1998 г.).

Недостатком известного способа является то, что в условиях проточного режима обработки нет гарантии полного насыщения жидкости озоном, что ведет к проскоку закомплексованной формы радионуклидов в очищенную жидкую фазу через селективный сорбент, поскольку ни отделение сгущенного шлама, ни селективная сорбция не задерживают закомплексованные радионуклиды, что снижает эффективность переработки жидких радиоактивных отходов в целом.

Известен способ переработки жидких радиоактивных отходов, содержащих радионуклиды в ионной и коллоидной формах и балластные компоненты минеральной и органической природы в растворенном и взвешенном состояниях, заключающийся в том, что органические компоненты жидких радиоактивных отходов окисляют до газообразного состояния, а минеральные ионные компоненты, в том числе и радионуклиды, переводят во взвешенное состояние в виде гидроокисей металлов путем подачи в поток отходов озона, поток окисленных отходов разделяют на сгущенный шлам и жидкую фазу, на селективных сорбентах проводят доочистку жидкой фазы от оставшихся в ионной форме радионуклидов, а образовавшийся шлам и отработанные сорбенты переводят в твердую форму и отправляют на длительное хранение. При этом, перед обработкой озоном поток отходов путем фильтрации на сетчатом фильтрующем материале очищают от взвешенных частиц, обработку озоном проводят в циркуляционном режиме, разделение окисленного потока на сгущенный шлам и жидкую фазу проводят путем фильтрации на сетчатом фильтрующем материале, а перед доочисткой жидкой фазы на селективных сорбентах проводят мембранную микрофильтрацию с отделением от жидкой фазы радионуклидов в коллоидной форме, которые возвращают в поток жидких радиоактивных отходов после подачи в него озона (см. патент РФ на изобретение №2268513 «Способ переработки жидких радиоактивных отходов», 7 МПК G21F 9/06, G21F 9/20, приоритет от 28.12.2004 г., опубл. 20.01.2006 г.).

Основным недостатком известного способа является то, что радионуклиды цезия, находящиеся в ионной форме и вносящие наибольший вклад в суммарную активность ЖРО, удаляются только на конечной стадии процесса - селективными сорбентами, помещенными в фильтр-контейнеры. Поэтому при исходной активности радионуклидов цезия в ЖРО 3,7⋅108 Бк/л (10 Ku/м3) через фильтр-контейнер, содержащий гранулированный селективный сорбент на основе ферроцианида никеля, можно пропустить не более 12 м3 ЖРО, так как ресурс фильтр-контейнера по накопленной радиоактивности составляет 120 Ku (см. http://nii-izoterm.ru/index.php?option=com_content&task=view&id=72&Itemid=51). В реальных условиях на АЭС после упарки ЖРО кубовые остатки содержат от 3 до 10 Ku/м3, следовательно для переработки 1000 м3 таких ЖРО по способу прототипа необходимо будет использовать не менее 55 дорогостоящих фильтр-контейнеров сложной конструкции. (Стоимость одного фильтр-контейнера с учетом его монтажа и эксплуатации составляет около 2 млн рублей). Кроме того, из-за высокой активности, накопленной в каждом отработанном фильтр-контейнере (до 120 Ku по Cs-137) их перемещение, обслуживание и хранение очень сложно и дорогостояще, поскольку необходимы специальные мероприятия по защите персонала от облучения. Для размещения на хранение такого количества (55 шт фильтр-контейнеров на 1000 м3 ЖРО) по технологическим требованиям необходимо спецхранилище объемом не менее 100 м3. Таким образом, эффективный коэффициент снижения объема отходов при переработке 1000 м3 ЖРО будет не более 10.

В качестве прототипа рассмотрим способ переработки жидких радиоактивных отходов и их утилизации, включающий окисление отходов, отделение от жидкой фазы шламов, коллоидов и взвешенных частиц и удаление из жидкой фазы радионуклидов для последующей утилизации с применением селективных сорбентов и фильтров, отличающийся тем, что перед стадией отделения от жидкой фазы радиоактивных отходов шламов, коллоидов и взвешенных частиц добавляют в жидкие отходы при перемешивании селективные сорбенты в виде порошков, а затем полученную суспензию фильтруют, прокачивая через, по крайней мере, одну емкость, предназначенную для утилизации отходов и снабженную на выходе, по крайней мере, одним фильтрующим элементом, отделяющим от жидкой фазы нерастворимые вещества, после чего фильтрат пропускают, по крайней мере, через одну емкость, предназначенную для утилизации отходов, с гранулированными селективными сорбентами, при этом указанные емкости помещены в бетонные блоки. Пример реализации: указанным способом была проведена переработка ЖРО (pH 12,1), содержащих:

- сухой остаток (после сушки при 105°C) 285 г/л;

- взвешенные вещества (отделяемые на фильтре синяя лента) 5,1 г/л;

- удельная активность цезий-137 : 1,1⋅10-3 Ки/л;

- удельная активность кобальт-60 : 1,4⋅10-6 Ки/л.

В бак закачали 5 м3 ЖРО вышеуказанного состава и внесли при перемешивании композицию, состоящую из 5 кг селективного сорбента ферроцианида никеля, нанесенного на порошок аморфного кремнезема Сухоложского месторождения с размером частиц от 200 до 500 мкм и 0,5 кг сульфата никеля в качестве коагулянта. Сочетание аморфного кремнезема и агломератов, образующихся при взаимодействии коагулянта на основе никеля и взвешенных частиц ЖРО, позволяет легко отделять твердую фазу от жидкой внутри Корбрика Ф.

После 2-х часового перемешивания суспензию, состоящую из сорбента, взвешенных частиц, находившихся в ЖРО и коагулянта, подали в Корбрик Ф (позиция 2) с двумя фильтрэлементами, а после него очищенный от суспензии раствор направили на озонирование (позиция 3) для разрушения органических соединений и комплексов. К образовавшейся при окислении взвеси добавили 5 кг того же с орбента, что и в бак (позиция 1) и полученную суспензию направили в Корбрик Ф (позиция 4) с двумя фильтрэлементами. Очищенный от взвеси раствор пропустили через последовательно соединенные Корбрики С (позиции 5 и 6) с гранулированным селективным сорбентом на основе ферроцианида никеля. Очищенный раствор, содержащий менее 10 Бк/л 137Cs и 60Co, направили на упарку и кристаллизацию, (см. патент РФ на изобретение №2577512 «Способ переработки жидких радиоактивных отходов и их утилизации», приоритет от 29.12.2014 г., опубл. 20.03.2016 г.).

Основным недостатком прототипа является то, что при использовании сорбента перед озонированием следовые количества переходных металлов, входящие в состав сорбента, после фильтрации попадают в систему для озонирования и каталитически разрушают озон. Это приводит к значительному снижению эффективности озонирования, увеличению времени озонирования и, в некоторых случаях, к невозможности очистить ЖРО от ряда радионуклидов.

Технический результат заявляемого изобретения заключается в повышении эффективности способа переработки жидких радиоактивных отходов за счет сокращения объема радиоактивных отходов, требующих специального хранения и снижение дозовой нагрузки на обслуживающий персонал в процессе переработки жидких радиоактивных отходов.

Заявляемый технический результат достигается тем, что способ очистки жидких радиоактивных отходов включает фильтрацию, окисление жидких радиоактивных отходов с получением окисленного потока, его фильтрацию, микрофильтрацию и очистку от радионуклидов путем подачи фильтрата в емкость с гранулированными селективными сорбентами, причем после окисления перед фильтрацией в окисленный поток вносят селективный сорбент, причем сорбент вносят в жидкие радиоактивные отходы только после стадии окисления.

Новизна заявленного изобретения заключается в добавлении сорбента к жидким радиоактивным отходам только после стадии окисления.

При использовании сорбента перед окислением (как в способе-прототипе) следовые количества переходных металлов, входящие в состав сорбента, после фильтрации попадают в систему для озонирования и каталитически разрушают озон. Это приводит к значительному снижению эффективности озонирования, увеличению времени озонирования и, в некоторых случаях, к невозможности очистить ЖРО от ряда радионуклидов. При этом, эффективность использования сорбентов после озонирования, на 40-70% выше, чем до озонирования, следовательно, достигается значительное снижение количества подаваемых сорбентов и объема радиоактивных отработанных сорбентов, направляемых на захоронение. Исключаем оборудование для подачи сорбента перед стадией озонирования, а это баки, насосы трубопроводы и др., которое также требует утилизации в случае его поломки и относится к радиоактивным отходам.

Таким образом, добавление сорбента к жидким радиоактивным отходам только после стадии окисления приводит к сокращению объема радиоактивных отходов, требующих специального хранения.

В процессе переработки жидких радиоактивных отходов в окисленный поток вносят один или несколько селективных сорбентов.

При этом в окисленный поток вносят селективный сорбент в виде пасты или суспензии, или в виде порошка, или в виде гранул.

Внесение после окисления перед фильтрацией в окисленный поток селективного сорбента позволяет основное количество радионуклидов, в том числе радионуклидов цезия, перевести в шлам, отделяемый на стадиях фильтрации и микрофильтрации. При этом активность по радионуклидам цезия в жидкой фазе после фильтрации снижается до 10-4-10-5 Ku/м3, следовательно одним фильтр-контейнером можно будет очистить не 12 м3, как в способе-аналоге, а до 10000 м3 ЖРО, соответственно эффективный коэффициент снижения объема отходов вырастет не менее чем до 100. Необходимое для переработки ЖРО количество дорогостоящих фильтр-контейнеров и затраты на их спецхранение, также снизятся не менее чем в 100 раз. При этом добавка селективного сорбента увеличит объем отходов незначительно по сравнению с исходным объемом ЖРО, причем эти отходы не будут направлены на специальное хранение, а будут кондиционированы в штатном режиме по обычной технологии цементирования и захоронены, что принципиально.

Технических решений, совпадающих с совокупностью существенных признаков заявляемого изобретения, не выявлено, что позволяет сделать вывод о соответствии заявляемого изобретения такому условию патентоспособности как «новизна».

Заявляемые существенные признаки, предопределяющие получение указанного технического результата, явным образом не следуют из уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения такому условию патентоспособности как «изобретательский уровень».

Условие патентоспособности «промышленная применимость» подтверждается примерами конкретного выполнения заявляемого способа представленными ниже.

Пример 1

Заявляемый способ был применен для переработки ЖРО следующего состава: pH=10,2, общее солесодержание 371 г/л, активность по Cs-137 - 12,16 Ku/м3 (1,2⋅10-2Ku/л), по Со-60 - 0,09 Ku/м3 (9⋅10-5Ku/л).

В 10 литров исходных ЖРО, которые после предварительной фильтрации на сетчатом фильтре (отделяли частицы более 50 мкм) и озонирования содержали Со-60 менее 10-9 Ku/л и 1,1⋅10-2 Ku/л Cs-137, вносят 30 г (0,3% от массы ЖРО) селективного к цезию сорбента на основе ферроцианида никеля с размером частиц 100 мкм, после перемешивания в течение 1 часа отфильтровали полученную суспензию сначала на сетчатом фильтре с тонкостью фильтрации менее 5 мкм, а затем осуществили микрофильтрацию на керамических мембранах с порами 0,2 мкм. Содержание Cs-137 в очищенном растворе составило 4,1⋅10-8 Ku/л. При переработке такого ЖРО ресурс фильтр-контейнера используемого в настоящее время на АЭС, будет составлять не менее 1000 м3, а при отсутствии стадии внесения порошкового сорбента, содержание Cs-137 в очищенном растворе составит 1,1⋅10-2 Ku/л, ресурс фильтр-контейнера составит менее 10 м3 ЖРО.

Пример 2

В ЖРО, такие же, как в Примере 1, после озонирования вносят 100 г водной суспензии сорбента ферроцианида никеля (содержащей 50 г (0,5% от массы ЖРО) коллоидного сорбента ферроцианида никеля) и после двух часового перемешивания отфильтровали как в Примере 1. Удельная активность раствора составила менее 0,4⋅10-1010 Ku/л, следовательно исходя из норм радиационной безопасности, такой раствор не требует дальнейшей доочистки с использование фильтр-контейнеров. После упарки данного раствора, полученный плав может храниться на полигонах с нерадиоактивными химическими материалами.

Похожие патенты RU2675787C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2017
  • Ремез Виктор Павлович
RU2675251C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2004
  • Савкин Александр Евгеньевич
  • Свитцов Алексей Александрович
  • Хубецов Сослан Борисович
  • Корчагин Юрий Павлович
  • Резник Артур Аронович
  • Зинин Александр Валентинович
  • Красников Петр Владимирович
  • Прилепо Юрий Петрович
  • Арустамов Артур Эдуардович
RU2268513C1
СПОСОБ ОЧИСТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2013
  • Аржаткин Владимир Геннадьевич
  • Архипов Владимир Павлович
  • Басиев Александр Гаврилович
  • Ершов Борис Григорьевич
  • Новиков Дмитрий Олегович
  • Калашников Валерий Георгиевич
  • Камруков Александр Семенович
  • Константинов Виталий Евгеньевич
  • Козлов Николай Павлович
  • Лагунова Юлия Олеговна
  • Матвеенко Александр Валентинович
  • Малков Кирилл Ильич
  • Селиверстов Александр Федорович
  • Трофимова Мария Олеговна
  • Чечельницкий Геннадий Моисеевич
  • Шашковский Сергей Геннадьевич
  • Яловик Михаил Степанович
RU2560837C2
Способ переработки жидких радиоактивных отходов 2017
  • Селиверстов Александр Федорович
  • Тихомиров Анатолий Михайлович
  • Матвеенко Александр Валентинович
  • Аржаткин Владимир Геннадьевич
  • Чечельницкий Геннадий Моисеевич
RU2654195C1
СПОСОБ ОЧИСТКИ КУБОВЫХ ОСТАТКОВ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ ОТ РАДИОАКТИВНОГО КОБАЛЬТА И ЦЕЗИЯ 2011
  • Шмаков Леонид Васильевич
  • Перегуда Владимир Иванович
  • Черемискин Владимир Иванович
  • Тишков Виктор Михайлович
  • Черемискин Сергей Владимирович
  • Чалиян Александр Григорьевич
  • Новолодский Виктор Алексеевич
RU2467419C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ И ИХ УТИЛИЗАЦИИ 2014
  • Ремез Виктор Павлович
RU2577512C1
СПОСОБ ПЕРЕРАБОТКИ КУБОВОГО ОСТАТКА ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2006
  • Авраменко Валентин Александрович
  • Добржанский Виталий Георгиевич
  • Сергиенко Валентин Иванович
  • Шматко Сергей Иванович
RU2297055C1
СПОСОБ ОЧИСТКИ ОТ 60CO ТЕХНОЛОГИЧЕСКИХ РАСТВОРОВ РАДИОХИМИЧЕСКОГО ПРОИЗВОДСТВА, ОТНОСЯЩИХСЯ К СРЕДНЕ- И НИЗКОАКТИВНЫМ ОТХОДАМ 2014
  • Апальков Глеб Алексеевич
  • Ефремов Игорь Геннадьевич
  • Смирнов Сергей Иванович
  • Жабин Андрей Юрьевич
  • Кокарев Геннадий Геннадьевич
RU2553976C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2016
  • Ремез Виктор Павлович
RU2631244C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 1996
  • Пензин Р.А.
  • Шептунов В.С.
  • Лесохин Б.М.
  • Булыгин В.К.
  • Петров С.В.
RU2112289C1

Реферат патента 2018 года СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО). Способ очистки жидких радиоактивных отходов включает фильтрацию, окисление жидких радиоактивных отходов с получением окисленного потока, его фильтрацию, микрофильтрацию и очистку от радионуклидов путем подачи фильтрата в емкость с гранулированными селективными сорбентами. После окисления перед фильтрацией в окисленный поток вносят селективный сорбент, причем сорбент вносят в жидкие радиоактивные отходы только после стадии окисления. Изобретение позволяет повысить эффективность способа переработки жидких радиоактивных отходов за счет сокращения объема радиоактивных отходов, требующих специального хранения. 2 пр.

Формула изобретения RU 2 675 787 C1

Способ очистки жидких радиоактивных отходов, включающий фильтрацию, окисление жидких радиоактивных отходов с получением окисленного потока, его фильтрацию, микрофильтрацию и очистку от радионуклидов путем подачи фильтрата в емкость с гранулированными селективными сорбентами, отличающийся тем, что после окисления перед фильтрацией в окисленный поток вносят селективный сорбент, причем сорбент вносят в жидкие радиоактивные отходы только после стадии окисления.

Документы, цитированные в отчете о поиске Патент 2018 года RU2675787C1

ЗАПИСЫВАЮЩЕЕ УСТРОЙСТВО И СПОСОБ ОБРАБОТКИ, ВЫПОЛНЯЕМЫЙ ЗАПИСЫВАЮЩИМ УСТРОЙСТВОМ 2011
  • Комано Юсуке
  • Наканиси Хидеки
RU2477512C1
EP 3242298 A1, 08.11.2017
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ ОТ ПРИМЕНЕНИЯ ДЕЗАКТИВИРУЮЩИХ РАСТВОРОВ 2012
  • Мартынов Петр Никифорович
  • Асхадуллин Радомир Шамильевич
  • Богданович Наталья Григорьевна
  • Скоморохова Светлана Николаевна
  • Китаева Наталья Константиновна
  • Ситников Иван Владимирович
  • Грушичева Елена Александровна
  • Трифанова Елена Михайловна
  • Чабань Андрей Юрьевич
RU2473145C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ НИЗКОГО УРОВНЯ АКТИВНОСТИ 2003
  • Слюнчев О.М.
  • Резчиков Д.Е.
RU2256965C2
US 5960368 A, 28.09.1999.

RU 2 675 787 C1

Авторы

Ремез Виктор Павлович

Даты

2018-12-25Публикация

2017-12-19Подача