Изобретение относится к области строительства и может быть использовано для устройства фундаментов резервуаров для хранения нефти и продуктов ее переработки в условиях сезоннопромерзающих и вечномерзлых грунтов Крайнего Севера.
Из существующего уровня техники известен теплоизолированный фундамент, включающий жесткое тело с выступами и штрабами со стороны, обращенной к грунту, вкладышами в штрабах фундамента, выполненными из теплоизоляционного материала, например пенополистирола, причем соотношение площадей выступов и штраб фундамента принимается таким, чтобы давление на грунт по нижней поверхности выступов было не менее величины нормального давления морозного пучения грунта, а давление на грунт по нижней поверхности вкладышей - не более величины расчетного сопротивления материала вкладышей на сжатие. Фундамент также содержит дополнительный утеплитель, размещенный за пределами фундамента. Крайние ряды штраб с вкладышами выполнены со стороны каждого наружного края фундамента (RU 2237780, МПК E02D 27/01, E02D 27/35, С2, опубл. 27.01.2004). Недостатками данного фундамента являются невозможность снижения теплообмена непосредственно между днищем резервуара, в отличие от стенки резервуара, не имеющего опору на фундамент, и грунтами основания, а так же невозможность определения максимального количества теплоизоляционного материала для допустимой величины относительной вертикальной деформации фундамента резервуара.
Так же известен теплоизолированный фундамент, включающий жесткое тело, состоящее из подошвы и стены, с прокладкой со стороны подошвы, обращенной к грунту, выполненной из теплоизоляционного материала, например из пенополистирола, а также дополнительный утеплитель, размещенный за пределами фундамента. Верхний край дополнительного утеплителя пропущен со стороны наружного края фундамента в виде прерывистых вкладышей через жесткое тело фундамента и соединен с дополнительным утеплителем противоположного наружного края фундамента. Давление на грунт по подошве фундамента принимается не более величины расчетного сопротивления теплоизоляционного материала на сжатие, а относительная площадь прерывистых вкладышей определяется из соотношения. Дополнительный утеплитель, установленный с наружной стороны подошвы фундамента, соединен с утеплителем наружной стены фундамента. Дополнительный утеплитель, установленный с внутренней стороны подошвы фундамента, соединен с утеплителем внутренней стены фундамента. Вкладыши дополнительного утеплителя фундамента соединены с утеплителем перекрытия над фундаментом. Утеплитель, установленный с наружной стороны стены фундамента, соединен с утеплителем отмостки. Утеплитель, установленный с внутренней стороны стены фундамента, соединен с утеплителем перекрытия над фундаментом (RU 2357044, МПК E02D 27/01, E02D 27/35, С2, опубл. 27.05.2009). Недостатками данного фундамента являются невозможность снижения теплообмена непосредственно между днищем резервуара, в отличие от стенки резервуара, не имеющего опору на фундамент, и грунтами основания, а так же невозможность определения максимального количества теплоизоляционного материала для допустимой величины относительной вертикальной деформации фундамента резервуара.
Так же известен фундамент резервуара, который представляет собой подушку из песка и пеностекла (Лисин Ю.В., Сапсай А.Н., Суриков В.И., Павлов В.В., Сощенко А.Е., Бондаренко В.В. Создание и реализация инновационных технологий строительства в проектах развития нефтепроводной структуры Западной Сибири (проекты «Пурпе - Самотлор», «Заполярье - Пурпе») // Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. - 2013. - №4 (12). - С. 6-11). Недостатками данного фундамента являются необходимость использования сложного в производстве пеностекла, имеющего более высокий коэффициент теплопроводности (https://ru.wikipedia.org/wiki/ Пеностекло) в сравнении с другими теплоизолирующими материалами (http://tis-e.ru/produktsija/granulirovannyj_penopolistirol/texnicheskie_xarakteristiki_materiala), а так же невозможность определения максимального количества теплоизоляционного материала для допустимой величины относительной вертикальной деформации фундамента резервуара.
Наиболее близким к заявляемой конструкции является фундамент резервуара, который представляет собой подготовленный грунт в виде подушки из среднезернистого песка и искусственной добавки. Искусственная добавка представляет собой дисперсный теплоизолирующий материал в виде гранулированного вспененного полистирола в количестве до 10% по объему подушки фундамента (RU 2592929, МПК E02D 27/35, С1, опубл. 27.07.2016).
Недостатком данного технического решения является предотвращение или уменьшение растепления грунта Крайнего Севера и потери устойчивости грунта при одновременном обеспечении осадки фундамента резервуара.
Задачей, на решение которой направлено изобретение, является снижение теплообмена непосредственно между днищем резервуара и сезонноиромерзающими и вечномерзлыми грунтами основания в условиях Крайнего Севера с целью предотвращения или уменьшения растепления последних и потери ими устойчивости при одновременном обеспечении осадки фундамента резервуара, не превышающей допустимой величины.
Данный технический результат достигается тем, что фундамент резервуара представляет собой подготовленный грунт в виде подушки из средне-зернистого песка и искусственной добавки в виде дисперсного теплоизолирующего материала, например, гранулированного вспененного полистирола ТУ 2244-005-86901126-2012 максимальный объем VГПС которого в общем объеме VФ подушки фундамента определяется по формуле:
VГПС=VФ⋅n, где
VФ - общий объем подушки фундамента, куб.м;
n - максимальная объемная доля искусственной добавки в виде дисперсного теплоизолирующего материала в общем объеме VФ подушки фундамента.
Общий объем VФ подушки фундамента определяется исходя из конструктивных соображений по формуле:
, где
DФ - диаметр подушки фундамента резервуара, м;
hФ - высота подушки фундамента резервуара, м.
Максимальная объемная доля n искусственной добавки в виде дисперсного теплоизолирующего материала в общем объеме VФ подушки фундамента определяется величиной относительной вертикальной деформации ε подушки фундамента (Фиг. 1), которая в свою очередь зависит от предельной деформации основания резервуара smax, соответствующей пределу эксплуатационной его пригодности по технологическим требованиям (согласно СП 43.13330.2012), и определяется по формуле:
, где
smax - предельная деформация основания резервуара, м.
На Фиг. 1 представлен график зависимости относительной вертикальной деформации ε подушки фундамента от максимальной объемной доли n гранулированного вспененного полистирола в среднезернистом песчаном грунте.
На Фиг. 2 представлен порядок определения максимальной объемной доли n искусственной добавки в виде дисперсного теплоизолирующего материала в общем объеме VФ подушки фундамента в зависимости от величины относительной вертикальной деформации ε подушки фундамента.
Для установки резервуара, днище которого должно располагаться на сезоннопромерзающих и вечномерзлых грунтах в условиях Крайнего Севера, первоначально определяют место установки резервуара. Затем подготавливают грунт, представляющий собой подушку из среднезернистого песка и искусственной добавки виде дисперсного теплоизолирующего материала, например гранулированного вспененного полистирола (ТУ 2244-005-86901126-2012), объем которого определяют по формуле:
, где
VФ - общий объем подушки фундамента, куб. м;
DФ - диаметр подушки фундамента резервуара, м;
hФ - высота подушки фундамента резервуара, м.
Например:
при диаметре Dф, подушки фундамента резервуара равном 64 м и высоте hф подушки фундамента равной 0,6 м, объем Vф подушки фундамента резервуара будет равен:
Предельная деформация основания резервуара smax, соответствующая пределу эксплуатационной его пригодности по технологическим требованиям в соответствии с СП 43.13330.2012 равна:
Величина относительной вертикальной деформации ε равна:
В соответствии с графиком на Фиг. 2 максимальная объемная доля n искусственной добавки в виде гранулированного вспененного полистирола составит 0,244. Таким образом, объем VГПС гранулированного вспененного полистирола, необходимого для устройства подушки фундамента резервуара будет равен:
VГПС=VФ⋅n=1930,2⋅0,244≈471 м3.
Объем VСП среднезернистого песчаного грунта, необходимого для устройства подушки фундамента резервуара составит:
VСП=VФ-VГПС=1930,2-471,0=1459,2 м3.
Уплотняют подготовленную подушку фундамента резервуара в соответствии с указаниями п. 17 «Уплотнение грунтов, устройство грунтовых подушек и предпостроечное уплотнение слабых водонасыщенных грунтов» (СП 45.13330.2012 «Земляные сооружения, основания и фундаменты. Актуализированная редакция СНиП 3.02.01-87»). Устанавливают резервуар на подготовленную подушку фундамента, нижняя часть которого опирается на сезоннопромерзающие и вечномерзлые грунты первоначально определенного места установки резервуара.
Теплопроводность структуры с замкнутыми включениями будет равна (Дульнев Г.Н., Заричняк Ю.П. Теплопроводность смесей и композиционных материалов. Справочная книга. Л.: «Энергия», 1974. 264 с., стр. 22, ф-ла 1-17):
где λ - коэффициент теплопроводности структуры с замкнутыми включениями,
λ1 - коэффициент теплопроводности связующего материала,
λ2 - коэффициент теплопроводности замкнутых включений.
Причем:
, ,
где V2 - объем замкнутых включений,
V - объем структуры с замкнутыми включениями.
Таким образом, при использовании в качестве связующей основы подушки фундамента резервуара среднезернистого песчаного грунта, имеющего коэффициент теплопроводности λсп=1,9 Вт/(м⋅К) (Физические величины: Справочник / А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. - М.: Энергоатомиздат, 1991. - 1232 с. Таблица 15.25), а в качестве искусственной добавки (замкнутых включений) - гранулированный вспененный полистирол М35, имеющий коэффициент теплопроводности λгпс=0,04 Вт/(м⋅К) (Сайт производителя - Завод ТИС: http://tutteplo.ru/catalog/196/716/_aviewinfo_b21398), Теплопроводность полученной смеси грунта и вспененного полистирола будет равна:
, где
Расчеты показывают, что определение максимальной объемной доли искусственных добавок в виде дисперсного теплоизолирующего материала, например гранулированного вспененного полистирола М35, в зависимости от допустимой величины относительной вертикальной деформации фундамента резервуара позволяет эффективно снизить коэффициент теплопроводности материала подготовленной песчаной подушки фундамента резервуара.
Например, в приведенном расчете это снижение составило 1,61 раза (1,9/1,18=1,61), что позволяет использовать предлагаемое изобретение в условиях Крайнего Севера для снижения теплообмена непосредственно между днищем резервуара и сезонноиромерзающими и вечномерзлыми грунтами основания при одновременном обеспечении допустимой величины относительной вертикальной деформации фундамента резервуара.
Использование предложенного технического решения позволяет снизить теплообмен непосредственно между днищем резервуара и сезонноиромерзающими и вечномерзлыми грунтами основания в условиях Крайнего Севера. Результатом снижения теплообмена является предотвращение или уменьшение растепления грунтов оснований и, как следствие, предотвращение потери ими устойчивости при одновременном обеспечении допустимой величины относительной вертикальной деформации. В случае хранения в резервуаре нефти или продуктов ее переработки снижение теплообмена будет препятствовать понижению температуры хранимого продукта и ухудшению его реологических свойств.
название | год | авторы | номер документа |
---|---|---|---|
ФУНДАМЕНТ РЕЗЕРВУАРА С УЛУЧШЕННЫМИ ТЕПЛОИЗОЛЯЦИОННЫМИ СВОЙСТВАМИ | 2015 |
|
RU2592929C1 |
ТЕПЛОИЗОЛИРОВАННЫЙ ФУНДАМЕНТ | 2006 |
|
RU2333319C2 |
СПОСОБ СНИЖЕНИЯ ВОЗДЕЙСТВИЯ СИЛ МОРОЗНОГО ПУЧЕНИЯ И ПОВЫШЕНИЯ УСТОЙЧИВОСТИ СВАЙНЫХ ФУНДАМЕНТОВ В КРИОЛИТОЗОНЕ | 2015 |
|
RU2602538C1 |
ПОВЕРХНОСТНЫЙ ФУНДАМЕНТ СООРУЖЕНИЯ, ОБЕСПЕЧИВАЮЩИЙ СОХРАНЕНИЕ ГРУНТОВ ОСНОВАНИЯ В МЕРЗЛОМ СОСТОЯНИИ С ОДНОВРЕМЕННЫМ ОБОГРЕВОМ СООРУЖЕНИЯ | 2015 |
|
RU2583025C1 |
Поверхностный фундамент здания, обеспечивающий сохранение грунтов основания в мерзлом состоянии с одновременным обогревом здания | 2017 |
|
RU2684941C2 |
Устройство для защиты основания фундамента от промерзания | 2022 |
|
RU2781801C1 |
СПОСОБ ОХЛАЖДЕНИЯ ПОДПОЛЬНЫХ ПЕРЕКРЫТИЙ | 1973 |
|
SU388097A1 |
СПОСОБ ТЕРМОСТАБИЛИЗАЦИИ ГРУНТОВ ОСНОВАНИЙ СВАЙНЫХ ФУНДАМЕНТОВ ОПОР ТРУБОПРОВОДА | 2015 |
|
RU2616029C1 |
ХЛАДОНОСИТЕЛЬ ДЛЯ ТЕРМОСТАБИЛИЗАЦИИ ВЕЧНОМЕРЗЛОГО ГРУНТА | 2014 |
|
RU2577056C1 |
СПОСОБ СНИЖЕНИЯ ВОЗДЕЙСТВИЯ КАСАТЕЛЬНЫХ СИЛ МОРОЗНОГО ПУЧЕНИЯ НА СВАЙНЫЕ ФУНДАМЕНТЫ | 2023 |
|
RU2817932C1 |
Изобретение относится к области строительства и может быть использовано для устройства фундаментов резервуаров для хранения нефти и продуктов ее переработки в условиях сезоннопромерзающих и вечномерзлых грунтов Крайнего Севера. Фундамент резервуара представляет собой подготовленный грунт в виде подушки из среднезернистого песка и искусственной добавки. Искусственная добавка представляет собой дисперсный теплоизолирующий материал в виде гранулированного вспененного полистирола, максимальный объем VГПС которого в общем объеме VФ подушки фундамента определяется по формуле VГПС=VФ⋅n, где VФ - общий объем подушки фундамента, куб. м; n - максимальная объемная доля искусственной добавки в виде дисперсного теплоизолирующего материала в общем объеме VФ подушки фундамента. Технический результат состоит в обеспечении снижения теплообмена непосредственно между днищем резервуара и сезоннопромерзающими и вечномерзлыми грунтами основания в условиях Крайнего Севера, предотвращении или уменьшении растепления грунтов оснований и, как следствие, предотвращении потери ими устойчивости при одновременном обеспечении допустимой величины относительной вертикальной деформации фундамента резервуара. 2 ил.
Фундамент резервуара, представляющий собой подготовленный грунт в виде подушки из среднезернистого песка и искусственной добавки, отличающийся тем, что искусственная добавка представляет собой дисперсный теплоизолирующий материал в виде гранулированного вспененного полистирола, максимальный объем VГПС которого в общем объеме VФ подушки фундамента определяется по формуле:
VГПС=VФ⋅n,
где VФ - общий объем подушки фундамента, куб. м;
n - максимальная объемная доля искусственной добавки в виде дисперсного теплоизолирующего материала в общем объеме VФ подушки фундамента.
ФУНДАМЕНТ РЕЗЕРВУАРА С УЛУЧШЕННЫМИ ТЕПЛОИЗОЛЯЦИОННЫМИ СВОЙСТВАМИ | 2015 |
|
RU2592929C1 |
ПРОТИВОПУЧИННЫЙ ФУНДАМЕНТ ЗДАНИЯ С ПОДВАЛОМ | 2010 |
|
RU2440464C1 |
Гидравлический привод погрузочного щита трелевочного трактора | 1961 |
|
SU141393A1 |
СПОСОБ ГЛУБИННОГО ВИБРОУПЛОТНЕНИЯ ПЕСЧАНЫХ ГРУНТОВ | 1998 |
|
RU2135690C1 |
Здание,сооружение,возводимое на пучинистых грунтах | 1976 |
|
SU623936A1 |
СПОСОБ ПОДГОТОВКИ ОСНОВАНИЯ РЕЗЕРВУАРА | 2003 |
|
RU2242563C1 |
Способ тушения пожара в помещении для баков с горючими жидкостями и система для его осуществления | 1987 |
|
SU1634287A1 |
Авторы
Даты
2019-01-11—Публикация
2018-02-27—Подача