ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ Российский патент 2019 года по МПК B01D27/08 B01D63/06 B01D61/18 B01D61/08 

Описание патента на изобретение RU2678016C1

Изобретение относится к фильтрационному оборудованию, а именно к конструкциям фильтрующих элементов, фильтров и может быть использовано для очистки воды, технических, пищевых и других жидкостей.

Известно устройство для очистки жидкости от механических частиц [Патент РФ №2225744, МПК B01D 27/00. Фильтрующий патрон для устройств обработки воды с гравитационной подачей. Опубл. 20.03.2004]. Устройство содержит трубчатый корпус, крышку с отверстием и днище. Трубчатый корпус устройства способен удалять из воды частицы размером не менее 3-4 мкм.

Недостатками известного технического решения являются относительно низкая эффективность очистки воды от механических частиц, солей тяжелых металлов и растворенных в воде комплексов железа, марганца, алюминия, меди, свинца, хрома, кадмия, цинка, фтора, мышьяка, свободного хлора.

Наиболее близким к заявляемому техническому решению является фильтрующий элемент [Патент РФ №2148679, МПК 7С23С 14/20, Фильтрующий элемент и способ его изготовления. Опубл. 10.05.2000]. Фильтрующий элемент содержит пористую трубчатую подложку, днище и крышку с отверстием. Пористая трубчатая подложка состоит из термически спеченных частиц сверх высокомолекулярного полиэтилена. На ее внешней поверхности расположена однослойная фильтрующая мембрана.

Недостатками известного технического решения являются невозможность очистки жидкостей от механических частиц размером меньше 0,1 мкм, относительно низкая степень очистки жидкости от растворенных примесей.

Задача технического решения состоит в исключении указанных недостатков, а именно, в обеспечении очистки воды и других жидкостей от механических частиц размером от 0,05 до 0,1 мкм и увеличении эффективности очистки жидкости от растворенных примесей.

Технический результат - повышение тонкости очистки жидкости от механических примесей и эффективности очистки жидкости от растворенных примесей.

Для достижения технического результата в фильтрующем элементе, содержащем пористую трубчатую подложку, спеченную из полимерных частиц и фильтрующую мембрану, на торцах пористой трубчатой подложки установлены крышка с отверстием и днище, предлагается:

- на поверхности полимерных частиц выполнить покрытие;

- на внешней поверхности пористой трубчатой подложки нанести подстилающую плазмохимическую мембрану;

- на поверхности подстилающей плазмохимической мембраны расположить фильтрующую мембрану.

В частных случаи исполнения фильтрующего элемента предлагается:

- размер полимерных частиц обеспечить в диапазоне от 50 до 180 мкм;

- отношение эквивалентных диаметров сквозных пор пористой трубчатой подложки и подстилающей плазмохимической мембраны выдержать, по меньшей мере, равным 10;

- отношение эквивалентных диаметров сквозных пор подстилающей плазмохимической и фильтрующей мембран обеспечить, по меньшей мере, равным 50;

- покрытие на полимерных частицах выбрать с температурой плавления больше 1000°С и выполнить из сорбционно-активных плазменных частиц размером в диапазоне от 0,0035 до 0,007 мкм или сформировать из их плазмохимических нитридных, оксидных или оксинитридных частиц;

- покрытие на полимерных частицах выбрать с температурой плавления не более 1100°С и выполнить из каталитически активных плазменных частиц меди, олова или висмута размером в диапазоне от 0,0055 до 0,0085 мкм или сформировать из их плазмохимических оксидов;

- полимерные частицы с покрытием из сорбционно-активных и каталитически активных плазмохимических частиц смешать по массе, по меньшей мере, в соотношении 1:1.

Сущность технического решения пояснена фиг. 1 и 2, где на фиг. 1 и 2 представлены соответственно продольное осевое и поперечное сечения фильтрующего элемента.

На фиг. 1 и 2 приняты следующие позиционные обозначения: 1 - днище; 2 - крышка; 3 - отверстие; 4 - подстилающая плазмохимическая мембрана; 5 - пористая трубчатая подложка; 6 - фильтрующая мембрана.

Фильтрующий элемент содержит пористую трубчатую подложку 5, фильтрующую мембрану 6, крышку 2 с отверстием 3, днище 1, покрытие и подстилающую плазмохимическую мембрану 4.

Пористая трубчатая подложка 5 спечена из полимерных частиц.

Пористая подложка 5 имеет объемную пористость от 40 до 55 об. %. Объемная пористость определена двойным взвешиванием жидкости перед и после пропускания ее через пористую трубчатую подложку 5. Диаметр пор пористой трубчатой подложки 5 измеряют, в частности, по методу определения точки пузырька мембран по дистиллированной воде или спирту. [Мембраны полимерные. Метод определения точки пузырька плоских мембран, ГОСТ Р 50516-93]. Экспериментально установлено, что пористая трубчатая подложка 5, спеченная из полимерных частиц при температурах от 160 до 180°С, имеет максимальную объемную пористость и прочность, 5 обладает высокой стойкостью в агрессивных средах (коррозионной стойкостью) и возможностью эксплуатации при низких температурах (высокой морозостойкостью) и температурах до 80±5°С.

Полимерные частицы из сверхвысокомолекулярного полиэтилена с молекулярной массой 1,5⋅106 г/моль с увеличением температуры не переходит в вязко текучее состояние, что дает возможность переработки их в пористые материалы.

Наиболее распространенным методом получения высокопористого материала является процесс термического спекания полимерных частиц сверхвысокомолекулярного полиэтилена, в процессе которого образуется пористый материал, обладающий физико-химическими и механическими свойствами, приближающимися к свойствам компактного (беспористого) сверхвысокомолекулярного полиэтилена. Процесс спекания полимерных частиц в виде пористых трубчатых подложек 5 проводят на воздухе в электропечах.

На торцах пористой трубчатой подложки 5 установлены крышка 2 с отверстием 3 и днище 1.

Для герметического закрепления крышки 2 с отверстием 3 и днища 1 на торцах пористой трубчатой подложки 5 используют клеи фирмы Henkel или термическую приварку крышки 2 с отверстием 3 и днища 1 при давлении поджатая не более 0,001 МПа. При негерметическом присоединении крышки 2 с отверстием 3 и днища 1 к торцам пористой трубчатой подложки 5 возникают недопустимые течи очищаемой жидкости.

Покрытие выполнено на поверхности полимерных частиц.

Подстилающая плазмохимическая мембрана 4 нанесена на внешней поверхности пористой трубчатой подложки 5.

Фильтрующая мембрана 6 расположена на поверхности подстилающей плазмохимической мембраны 4.

Фильтрующую мембрану 6 на поверхности подстилающей плазмохимической мембраны 4 формируют в потоке частиц металлической плазмы размером от 0,005 до 0,01 мкм.

Возможны три варианта исполнения покрытия на полимерных частицах.

Во-первых, покрытие на полимерных частицах имеет температуру плавления больше 1000°С и выполнено из сорбционно-активных плазменных частиц размером в диапазоне от 0,0035 до 0,007 мкм или сформировано из их плазмохимических нитридных, оксидных или оксинитридных частиц.

Во-вторых, покрытие на полимерных частицах имеет температуру плавления не более 1100°С и выполнено из каталитически активных плазменных частиц меди, олова или висмута размером в диапазоне от 0,0055 до 0,0085 мкм или сформировано из их плазмохимических оксидов.

В-третьих, полимерные частицы с покрытием из сорбционно-активных и каталитически активных плазмохимических частиц смешаны по массе, по меньшей мере, в соотношении 1:1.

Другие частные случаи реализации технического решения.

Во-первых, размер полимерных частиц соответствует диапазону от 50 до 180 мкм.

Во-вторых, отношение эквивалентных диаметров сквозных пор пористой трубчатой подложки и подстилающей плазмохимической мембраны, по меньшей мере, равно 10.

В процессе осаждения потоков частиц плазмы на пористую трубчатую подложку 5 образуется развитая трехмерная поверхность подстилающей плазмохимической мембраны 4. Если толщина подстилающей плазмохимической мембраны 4 не больше 5-7 мкм, то пористость ее не может существенно отличаться от пористости трубчатой подложки 5. Для того чтобы преодолеть это различие требуется учитывать условие совместимости подстилающей плазмохимической мембраны 4 с пористой трубчатой подложкой 5. Выполнение условия достигается, когда отношение эквивалентного диаметра сквозных пор пористой трубчатой подложки 5 и подстилающей плазмохимической мембраны 4, составляет, по меньшей мере, не более 15, причем эквивалентный диаметр сквозных пор подстилающей плазмохимической мембраны 4, должен не превышать 0,5 мкм. Этот результат получен экспериментальным путем.

Пористая трубчатая подложка 5, спеченная из полимерных частиц без функциональных покрытий на них, гидрофобная, т.е. обладает повышенным гидравлическим сопротивлением. В этом случае подстилающая плазмохимическая мембрана 4 будет иметь эквивалентный диаметр сквозных пор существенно больше 0,5 мкм.

Пористая трубчатая подложка 5, спеченная из полимерных частиц с функциональными покрытиями на ней, гидрофильная, т.е. обладает пониженным гидравлическим сопротивлением. Наличие на полимерных частицах функциональных покрытий создает дополнительное условие достижения отношения эквивалентных диаметров сквозных пор подстилающей плазмохимической 4 и фильтрующей 7 мембраны до значения не менее 50.

В-третьих, отношение эквивалентных диаметров сквозных пор подстилающей плазмохимической 4 и фильтрующей 6 мембран, по меньшей мере, равно 50.

Выполнение условия совместимости фильтрующей мембраны 6 с подстилающей плазмохимической мембраной 4 определено составом металлической плазмы и значениями параметров режима нанесения фильтрующей мембраны 6: вакуум в рабочей камере вакуумно-дуговой установки, тип инертного газа в ней, ток дуги, величина напряжения между катодом и анодом и др. Температура и время нахождения фильтроэлемента в рабочей камере определены экспериментально с максимальной точностью, т.к. не соблюдение их значений приводит к невыполнению условия совместимости, равное 50.

Мембранный фильтрующий элемент очищает жидкость следующим образом.

Поток очищаемой жидкости поступает на поверхность фильтрующей мембраны 6, которая задерживает механические частицы. Очищенная от механических частиц жидкость проходит через подстилающую плазмохимическую мембрану 4, которая обеспечивает доставку жидкости с растворенными примесями на поверхность пористой трубчатой подложки 5. Сорбционно-активное покрытие на полимерных частицах захватывает примеси, растворенные в очищаемой жидкости. Присутствие полимерных частиц с покрытием из каталитически активных частиц совместно с частицами с покрытием из сорбционно-активных частиц интенсифицирует процесс очистки жидкости от растворенных примесей. Очищенная от механических и растворенных примесей жидкость через крышку 2 с отверстием 3 поступает потребителю.

Пример конкретного исполнения мембранного фильтрующего элемента.

Пористая трубчатая подложка 5 спечена из полимерных частиц сверх высокомолекулярного полиэтилена марки GUR 4120 с молекулярной массой 1⋅106 - 8⋅106 г/моль. Трубчатая пористая подложка имеет эквивалентный диаметр полимерных частиц равный 165±15 мкм, эквивалентный диаметр сквозных пор равный 5±1,5 мкм, объемную пористость равную 55,0±7,0 об. %, массу равную 470±21 г. Габариты пористой трубчатой подложки 5: высота 250,0±1,0 мм, внешний диаметр 70,0±0,5 мм, внутренний диаметр 40,0±0,5 мм.

Общая поверхность покрытия в пористой трубчатой подложке 5 составляет 1,5⋅105±103 см2.

Крышка 2 выполнена из полиэтилена марки 21506-000 диаметром 70,0±1,0 мм, толщиной 3,0±0,1 мм. Отверстие 3 имеет диаметр 25 мм с резьбой G.

Днище 1 изготовлено из полиэтилена марки 21506-000 диаметром 70,0±1,0 мм, толщиной 3,0±0,1 мм, включает шестигранную выемку под торцевой ключ.

Покрытие на полимерных частицах выполнено из смеси сорбционно-активных и каталитически активных плазмохимических частиц диоксида титана размером 0,0055±0,0015 мкм и частиц диоксида меди размером 0,007±0,0015 мкм соответственно.

Подстилающая плазмохимическая мембрана 4 выполнена из плазмохимических частиц нитрида алюминия, эквивалентный диаметр которых составляет 0,01±0,005 мкм. Подстилающая плазмохимическая мембрана 4 имеет толщину равную 15,0±4,0 мкм, объемную пористость равную 13,0±4,0 об. % и эквивалентный диаметр сквозных пор не более 0,5 мкм.

Отношение эквивалентных диаметров сквозных пор пористой трубчатой подложки 5 и подстилающей плазмохимической мембраны 4 равно 10.

Фильтрующая мембрана 6 выполнена из плазменных частиц титана, эквивалентный диаметр которых составляет 0,006±0,001 мкм. Толщина фильтрующей мембраны 6 равна 7,0±1,0 мкм, объемная пористость равна 10,0±3,0 об. %, эквивалентный диаметр сквозных пор фильтрующей мембраны 6 не более 0,05 мкм.

Отношение эквивалентных диаметров сквозных пор подстилающей плазмохимической 4 и фильтрующей 6 мембраны равно 50.

Отношение эквивалентных диаметров сквозных пор пористой трубчатой подложки 5 и фильтрующей мембраны 6 равно 500.

В таблице приведены результаты очистки питьевой воды фильтроэлементами I и II, содержащими подстилающую плазмохимическую мембрану 4 из нитрида алюминия и фильтрующую мембрану 6 из титана:

В очищенной фильтроэлементами I и II питьевой воды концентрация растворенных примесей уменьшена в 215 (для меди), 285 (для свинца) и 38 (для кадмия) раз. Скорость очистки питьевой воды от растворенных примесей фильтроэлементом I должна быть не больше 27,3 л/ч, т.к. при увеличении ее не происходит максимально эффективная очистка от растворенных в воде примесей меди, свинца и кадмия.

Скорость фильтрации фильтроэлементом II, при которой происходит максимально эффективная очистка от растворенных в воде примесей меди, свинца и кадмия, возрастает до значения 70,7 л/ч, т.е. увеличение производительности фильтроэлемента II в сравнении с фильтроэлементом I составляет 2,6.

Таким образом, тонкость и скорость очистки воды от механических и растворенных примесей повышаются соответственно в 2,0 и 2,6 раз.

Рассматриваемое техническое решение позволяет очистить жидкость от частиц размером до 0,05 мкм и повысить эффективность очистки жидкости от растворимых примесей.

Похожие патенты RU2678016C1

название год авторы номер документа
ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1999
  • Григорьев Г.В.
  • Мартынов П.Н.
  • Гулевский В.А.
RU2148679C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНОГО МНОГОСЛОЙНОГО ФИЛЬТРУЮЩЕГО МАТЕРИАЛА И ФИЛЬТРОЭЛЕМЕНТ 2006
  • Антипов Владимир Юрьевич
  • Ширяева Галина Валерьяновна
  • Яковлев Александр Алексеевич
RU2333782C2
МЕМБРАННЫЙ ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ ДЛЯ ОЧИСТКИ АГРЕССИВНЫХ ЖИДКОСТЕЙ 2008
  • Мартынов Петр Никифорович
  • Григорьев Геннадий Васильевич
  • Асхадуллин Радомир Шамильевич
  • Григоров Виталий Владимирович
  • Ягодкин Иван Васильевич
  • Скворцов Сергей Семенович
RU2397802C2
МЕМБРАННЫЙ ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ ДЛЯ ОЧИСТКИ АГРЕССИВНЫХ ЖИДКОСТЕЙ 2008
  • Мартынов Петр Никифорович
  • Григорьев Геннадий Васильевич
  • Асхадуллин Радомир Шамильевич
  • Григоров Виталий Владимирович
  • Ягодкин Иван Васильевич
  • Скворцов Сергей Семенович
RU2519076C2
МЕМБРАННОЕ УСТРОЙСТВО ДЛЯ ОЧИСТКИ ЖИДКОСТИ 2010
  • Мартынов Пётр Никифорович
  • Ягодкин Иван Васильевич
  • Григорьев Геннадий Васильевич
  • Мельников Валерий Петрович
  • Дельнов Валерий Николаевич
RU2443457C2
МЕМБРАННЫЙ ФИЛЬТР ДЛЯ ОЧИСТКИ ЖИДКОСТИ 2013
  • Мартынов Пётр Никифорович
  • Ягодкин Иван Васильевич
  • Григорьев Геннадий Васильевич
  • Григоров Виталий Владимирович
  • Мельников Валерий Петрович
  • Дельнов Валерий Николаевич
RU2542268C2
МЕМБРАННЫЙ МОДУЛЬ 2009
  • Мартынов Петр Никифорович
  • Ягодкин Иван Васильевич
  • Григорьев Геннадий Васильевич
  • Григоров Виталий Владимирович
  • Мельников Валерий Петрович
  • Скворцов Сергей Семенович
  • Дельнов Валерий Николаевич
RU2417117C1
МЕМБРАННЫЙ МОДУЛЬ ДЛЯ ОЧИСТКИ ЖИДКОСТИ 2009
  • Мартынов Петр Никифорович
  • Ягодкин Иван Васильевич
  • Григорьев Геннадий Васильевич
  • Григоров Виталий Владимирович
  • Мельников Валерий Петрович
  • Дельнов Валерий Николаевич
RU2416459C2
ФИЛЬТР ТОНКОЙ ОЧИСТКИ ЖИДКОСТИ И/ИЛИ ГАЗА 2003
  • Зеленов Е.В.
  • Домашов А.Н.
  • Шелейковский В.Л.
RU2242270C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФИЛЬТРУЮЩЕГО ЭЛЕМЕНТА И ПОВОРОТНОЕ ПРИСПОСОБЛЕНИЕ ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Борисов Сергей Владимирович
  • Григоров Игорь Георгиевич
  • Кузнецов Михаил Владимирович
  • Поляков Евгений Валентинович
  • Хлебников Николай Александрович
  • Швейкин Геннадий Петрович
  • Щепашковский Олег Павлович
RU2361965C1

Иллюстрации к изобретению RU 2 678 016 C1

Реферат патента 2019 года ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ

Фильтрующий элемент относится к фильтрационному оборудованию. Фильтрующий элемент, содержащий пористую трубчатую подложку, спеченную из полимерных частиц, и фильтрующую мембрану, на торцах пористой трубчатой подложки установлены крышка с отверстием и днище, отличающийся тем, что на поверхности полимерных частиц выполнено покрытие, на внешней поверхности пористой трубчатой подложки нанесена подстилающая плазмохимическая мембрана из частиц нитрида алюминия, на поверхности подстилающей плазмохимической мембраны расположена фильтрующая мембрана из плазменных частиц титана, а в качестве полимерных частиц используют сверхвысокомолекулярный полиэтилен с молекулярной массой 1⋅106 - 8⋅106 г/моль. Технический результат - повышение тонкости очистки жидкости от механических примесей и эффективности очистки жидкости от растворенных примесей. 8 з.п. ф-лы, 2 ил., 1 табл.

Формула изобретения RU 2 678 016 C1

1. Фильтрующий элемент, содержащий пористую трубчатую подложку, спеченную из полимерных частиц, и фильтрующую мембрану, на торцах пористой трубчатой подложки установлены крышка с отверстием и днище, отличающийся тем, что на поверхности полимерных частиц выполнено покрытие, на внешней поверхности пористой трубчатой подложки нанесена подстилающая плазмохимическая мембрана из частиц нитрида алюминия, на поверхности подстилающей плазмохимической мембраны расположена фильтрующая мембрана из плазменных частиц титана, а в качестве полимерных частиц используют сверхвысокомолекулярный полиэтилен с молекулярной массой 1⋅106 - 8⋅106 г/моль.

2. Фильтрующий элемент по п. 1, отличающийся тем, что размер полимерных частиц соответствует диапазону от 50 до 180 мкм.

3. Фильтрующий элемент по п. 1, отличающийся тем, что отношение эквивалентных диаметров сквозных пор пористой трубчатой подложки и подстилающей плазмохимической мембраны, по меньшей мере, равно 10.

4. Фильтрующий элемент по п. 1, отличающийся тем, что отношение эквивалентных диаметров сквозных пор подстилающей плазмохимической и фильтрующей мембран, по меньшей мере, равно 50.

5. Фильтрующий элемент по п. 1, отличающийся тем, что покрытие на полимерных частицах имеет температуру плавления больше 1000°С и выполнено из сорбционно-активных плазменных частиц титана размером в диапазоне от 0,0035 до 0,0070 мкм или сформировано из их плазмохимических нитридных, оксидных или оксинитридных частиц титана.

6. Фильтрующий элемент по п. 1, отличающийся тем, что покрытие на полимерных частицах имеет температуру плавления не более 1100°С и выполнено из каталитически активных плазменных частиц меди, олова или висмута размером в диапазоне от 0,0055 до 0,0085 мкм или сформировано из их плазмохимических оксидов.

7. Фильтрующий элемент по п. 1, отличающийся тем, что полимерные частицы с покрытием из сорбционно-активных и каталитически активных плазмохимических частиц смешаны по массе, по меньшей мере, в соотношении 1:1.

8. Фильтрующий элемент по п. 1, отличающийся тем, что сверхвысокомолекулярный полиэтилен имеет марку GUR 4120.

9. Фильтрующий элемент по п. 1, отличающийся тем, что фильтрующая мембрана выполнена из плазменных частиц титана, эквивалентный диаметр которых составляет 0,006±0,001 мкм.

Документы, цитированные в отчете о поиске Патент 2019 года RU2678016C1

ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1999
  • Григорьев Г.В.
  • Мартынов П.Н.
  • Гулевский В.А.
RU2148679C1
Способ изготовления фильтрующего материала 2016
  • Митин Валерий Семёнович
  • Шарапаев Александр Игоревич
  • Мурадова Айтан Галандар Кызы
RU2635617C1
WO 1994000618 A1, 06.01.1994
СЪЕМНО-ДЕЛИТЕЛЬНОЕ УСТРОЙСТВО ЧЕСАЛЬНОГОАППАРАТА 0
SU174088A1

RU 2 678 016 C1

Авторы

Григорьев Геннадий Васильевич

Григоров Виталий Владимирович

Даты

2019-01-22Публикация

2017-12-28Подача