МЕМБРАННЫЙ ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ ДЛЯ ОЧИСТКИ АГРЕССИВНЫХ ЖИДКОСТЕЙ Российский патент 2014 года по МПК B01D63/06 B01D71/02 B82B1/00 

Описание патента на изобретение RU2519076C2

Изобретение относится к фильтрующим элементам, предназначенным для очистки агрессивных жидкостей.

Известен фильтрующий элемент, состоящий из органической пористой подложки с нанесенной на ее поверхность фильтрующей мембраной, выполненной из одного из металлов Ti, Zr, Hf, Cr, Al, Ni и нержавеющей стали, либо их оксинитридов, либо их нитридов, имеющей низкую адгезию к осадкам очищаемой среды [Патент на изобретение РФ №2148679 «Фильтрующий элемент и способ его изготовления», МКИ7 С23С 14/20, опубликован 10.05.2000 г.]. При этом диаметр пор органической пористой подложки больше диаметра пор фильтрующей мембраны, а толщина фильтрующей мембраны составляет 7-10 мкм.

Недостатком известного устройства является относительно низкая коррозионная стойкость его материалов в агрессивных жидкостях.

Известен фильтроэлемент, выполненный из порошкового металлического материала методом порошковой металлургии, например из титана или его сплавов [Свидетельство на полезную модель №27498 «Фильтр», опубликован 10.02.2003 г.].

Известный элемент тонкой очистки жидкостей выполнен из измельченной титановой стружки или отходов титана и его сплавов. Конструкция и материал фильтроэлемента позволяет проводить очистку различных жидкостей (пищевых, технических, агрессивных и др.), при температурах до 250°С и выше, однако, он не обеспечивают очистку среды в режиме ультрафильтрации, не может быть использован для удаления из очищаемой жидкости взвесей, растворенных примесей, а также в нем использован принцип объемной фильтрации.

Недостатками известного технического решения являются:

- относительно низкая коррозионная стойкость в агрессивных жидкостях;

- относительно быстрое забивание фильтроэлемента, существенно уменьшающее эксплуатационный ресурс и требующее применения интенсивных методов восстановления (регенерации) его работоспособности;

- ограниченное число регенераций фильтроэлемента.

Наиболее близким по технической сущности к заявляемому техническому решению является патронный фильтрующий элемент, содержащий внутреннюю перфорированную трубку, сформированный вокруг нее гофрированный материал, соединенные торцевыми деталями [Патент РФ на изобретение №2183493 «Патронный фильтрующий элемент и фильтрующий материал для его изготовления». Опубликован 20.06.2002]. В данном элементе фильтрующий материал выполнен в виде гофрированной пористой пленки из политетрафторэтилена с внутренней профилированной поверхностью в виде выступов, перфорированная трубка и торцевые детали выполнены из политетрафторэтилена, при этом перфорированная трубка и гофрированная пористая пленка соединены с обеих сторон с торцевыми деталями посредством сварки.

Недостатком известного устройства являются:

- относительно быстрое забивание фильтроэлемента, существенно уменьшающее эксплуатационный ресурс и требующее применения интенсивных методов восстановления (регенерации) его работоспособности;

- ограниченное число регенераций фильтроэлемента.

Предложенное техническое решение позволяет исключить указанные недостатки, а именно, уменьшить забивание фильтроэлемента и увеличить число его регенераций.

Для устранения указанных недостатков в мембранном фильтрующем элементе для очистки агрессивных жидкостей, состоящем из полого пористого цилиндра, днища и крышки, установленных по торцам полого пористого цилиндра, мембраны, нанесенной на наружную поверхность полого пористого цилиндра, предлагается:

- устройство дополнительно снабдить перфорированной трубой и установить ее внутри полого пористого цилиндра, изготовленного из керамического материала;

- мембрану выполнить из наноструктурного керамического материала в виде оксида алюминия (α-Al2O3), сформированного в потоке частиц эрозионной алюминиевой плазмы в кислородной среде.

В частных случаях выполнения устройства предлагается:

- в полом пористом цилиндре и мембране обеспечить открытые пористости равные соответственно 40-45 об.% и 9-11 об.%;

- в полом пористом цилиндре и мембране создать сквозные поры с размером 3-5 мкм и 0,05-0,1 мкм соответственно;

- в качестве керамического материала полого пористого цилиндра использовать спеченную смесь порошка оксида алюминия (α-Аl2О3) и нанопорошка аэрогеля гидрооксида алюминия (AlOOH) в соотношении 94 об.% и 6 об.% соответственно;

- в качестве материала перфорированной трубы, днища и крышки использовать коррозионностойкие хромоникелевые стали - Х18Н10Т; 12Х18Н10Т;

- полый пористый цилиндр и перфорированную трубу установить относительно друг друга коаксиально.

Технический результат состоит в увеличении эксплуатационного ресурса мембранного фильтрующего элемента, расширении его функциональных возможностей за счет увеличения температуры (до 600°С) очистки жидкостей.

Сущность изобретения поясняется на фигуре, на которой представлено продольное осевое сечение мембранного фильтрующего элемента для очистки агрессивных жидкостей. На фигуре приняты следующие обозначения: 1 - полый пористый цилиндр; 2 - перфорированная труба; 3 - днище; 4 - крышка; 5 - мембрана.

Мембранный фильтрующий элемент для очистки агрессивных жидкостей состоит из полого пористого цилиндра 1, днища 3 и крышки 4, установленных по торцам полого пористого цилиндра 1, мембраны 5, нанесенной на наружную поверхность полого пористого цилиндра 1, и перфорированной трубы 2, установленной внутри полого пористого цилиндра 1, изготовленного из керамического материала.

Мембрана 5 выполнена из наноструктурного керамического материала оксида алюминия (α-Аl2O3) и сформирована потоком частиц эрозионной алюминиевой плазмы в кислородной среде.

Получение материала мембраны из оксида алюминия осуществляется путем создания в рабочей камере давления реакционного газа (кислорода) равного 10-4-10-3 мм рт.ст. Образовавшееся плазмохимическое соединение Аl2О3 под действием электрического поля осаждается на пористую подложку, образуя пористую мембрану.

В частных случаях выполнения устройства имеет место следующее.

Полый пористый цилиндр 1 и мембрана 5 имеют открытые пористости равные соответственно 40-45 об % и 9-11 об.% и сквозные поры с размером 3-5 мкм и 0,05-0,1 мкм соответственно.

Механические свойства полого пористого цилиндра 1 сильно зависят от величины открытой пористости керамического материала. Чем меньше открытая пористость, тем больше прочность керамики и, следовательно, больше устойчивость ее к температурным и механическим нагрузкам. 40% открытая пористость полого пористого цилиндра 1 является пороговой, ниже которой значения недопустимы, т.к. скачкообразно на порядки уменьшается производительность очистки агрессивных жидкостей керамическим мембранным фильтрующим элементом. Верхнее значение открытой пористости в 45 об.% ограничено условием формирования мембраны 5 на поверхности полого пористого цилиндра 1. Чтобы получать мембрану 5 с открытой пористостью 11 об.%, требуется иметь полый пористый цилиндр 1 с открытой пористостью не больше 45 об.%. Формирование мембраны 5 на полом цилиндре с открытой пористостью больше 45 об.% сопровождается ее осыпанием с поверхности. При этом брак готовой продукции достигает 5-8%, что недопустимо для серийного производства таких мембранных керамических элементов. Мембрана 5 с открытой пористостью меньше 9 об.% не позволяет достигать эксплуатационный ресурс фильтроэлемента по очистке агрессивных жидкостей в силу того, что число регенераций уменьшается в 2-3 раза.

Отношение максимального размера сквозных пор полого пористого цилиндра 1 к минимальному размеру сквозных пор мембраны 5 (5/0,05) равное 100 является предельно разрешенным по условиям оптимального согласования двух пористых материалов. Отношение минимального размера сквозных пор полого пористого цилиндра 1 к максимальному размеру сквозных пор мембраны 5 (3/0,1) равное 30 является предельно разрешенным по условию тонкости очистки агрессивных жидкостей; отношение ниже 30 недопустимо.

В качестве керамического материала полого пористого цилиндра 1 используют спеченную смесь порошка оксида алюминия (α-Аl2О3) и нанопорошка аэрогеля гидрооксида алюминия (АlOOН),. представленные в смеси в соотношении 94 об.% и 6 об.%.

При соотношении спеченной смеси 6 об.% АlOOH + 94 об.% α-Аl2О3 достигается условие достижения максимальной механической прочности полого пористого цилиндра 1 из оксида алюминия. Гидрооксид алюминия является легирующей добавкой для повышения устойчивости оксида алюминия к температурным и механическим нагрузкам.

В качестве материала перфорированной трубы 2, днища 3 и крышки 4 используют коррозионностойкие хромоникелевые стали - нержавеющая аустенитная сталь Х18Н10Т, аустенитно-мартенситная жаропрочная нержавеющая сталь 12Х18Н10Т.

Полый пористый цилиндр 1 и перфорированная труба 2 установлены относительно друг друга соосно. Соосность обеспечивает равномерность механической нагрузки на полый пористый цилиндр 1 и беспрепятственный вывод отфильтрованной агрессивной жидкости в накопительную емкость.

Пример конкретного исполнения устройства

Мембранный фильтрующий элемент выполнен следующим образом. Полый пористый цилиндр 1 выполнен из спеченной смеси порошка оксида алюминия (α-Аl2О3) и нанопорошка аэрогеля гидрооксида алюминия (АlOOH), представленные в смеси в соотношении 94 об.% и 6 об.%.

Днище 3, крышка 4 и перфорированная труба 2 изготовлены из хромоникелевой стали Х18Н10Т.

Мембрана 5 выполнена из наноструктурного керамического материала - оксида алюминия (α-Аl2О3).

Полый пористый цилиндр 1 и мембрана 5 имеют открытые пористости равные соответственно 42,5±2,5 об % и 10±1 об.% и размеры сквозных пор соответственно равные 4±1 мкм и 0,075±0,025 мкм.

Мембранный фильтрующий элемент использован при очистке 40% соляной кислоты при температуре 25°С в течение 120 час. После эксплуатации мембранного фильтрующего элемента в указанных условиях на поверхности мембраны 5 не обнаружены очаги общей коррозии. За время эксплуатации мембранного фильтрующего элемента очищено 11,3 м3 40% соляной кислоты и проведено 12 регенераций. После каждой регенерации производительность мембранного фильтрующего элемента восстанавливалась до начальной.

Таким образом, заявленный мембранный фильтрующий элемент обеспечивает эффективную очистку агрессивных жидкостей при заданном эксплуатационном ресурсе, возможность многократной регенерации.

Похожие патенты RU2519076C2

название год авторы номер документа
МЕМБРАННЫЙ ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ ДЛЯ ОЧИСТКИ АГРЕССИВНЫХ ЖИДКОСТЕЙ 2008
  • Мартынов Петр Никифорович
  • Григорьев Геннадий Васильевич
  • Асхадуллин Радомир Шамильевич
  • Григоров Виталий Владимирович
  • Ягодкин Иван Васильевич
  • Скворцов Сергей Семенович
RU2397802C2
МЕМБРАННОЕ УСТРОЙСТВО ДЛЯ ОЧИСТКИ ЖИДКОСТИ 2010
  • Мартынов Пётр Никифорович
  • Ягодкин Иван Васильевич
  • Григорьев Геннадий Васильевич
  • Мельников Валерий Петрович
  • Дельнов Валерий Николаевич
RU2443457C2
МЕМБРАННЫЙ МОДУЛЬ ДЛЯ ОЧИСТКИ ЖИДКОСТИ 2009
  • Мартынов Петр Никифорович
  • Ягодкин Иван Васильевич
  • Григорьев Геннадий Васильевич
  • Григоров Виталий Владимирович
  • Мельников Валерий Петрович
  • Дельнов Валерий Николаевич
RU2416459C2
МЕМБРАННЫЙ МОДУЛЬ 2009
  • Мартынов Петр Никифорович
  • Ягодкин Иван Васильевич
  • Григорьев Геннадий Васильевич
  • Григоров Виталий Владимирович
  • Мельников Валерий Петрович
  • Скворцов Сергей Семенович
  • Дельнов Валерий Николаевич
RU2417117C1
МЕМБРАННЫЙ ФИЛЬТР ДЛЯ ОЧИСТКИ ЖИДКОСТИ 2013
  • Мартынов Пётр Никифорович
  • Ягодкин Иван Васильевич
  • Григорьев Геннадий Васильевич
  • Григоров Виталий Владимирович
  • Мельников Валерий Петрович
  • Дельнов Валерий Николаевич
RU2542268C2
Мембранный фильтр для очистки жидких сред от механических примесей 2016
  • Григоров Виталий Владимирович
  • Григорьев Геннадий Васильевич
  • Мартынов Дмитрий Петрович
  • Мельников Валерий Петрович
  • Раскач Ольга Владимировна
RU2638845C1
ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ 2017
  • Григорьев Геннадий Васильевич
  • Григоров Виталий Владимирович
RU2678016C1
УСТРОЙСТВО ДЛЯ СЕПАРАЦИИ ТОНКОДИСПЕРСНОЙ КАПЕЛЬНОЙ ЖИДКОСТИ ИЗ ПАРОГАЗОВОГО ПОТОКА 2004
  • Загнитько Александр Васильевич
  • Пушко Геннадий Иванович
  • Удовенко Александр Николаевич
  • Чувилин Дмитрий Юрьевич
RU2278721C1
УСТАНОВКА ДЛЯ ОЧИСТКИ ГАЗОВОГО ПОТОКА 2006
  • Глазков Олег Васильевич
  • Прасс Лембит Виллемович
  • Медведева Татьяна Васильевна
  • Князев Михаил Алексеевич
  • Фофанов Олег Олегович
RU2317844C2
СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО ФИЛЬТРОЭЛЕМЕНТА 1993
  • Горобец Б.Р.
  • Покровский Д.Д.
  • Павлюченков В.О.
  • Левинская М.Х.
  • Симкина Т.В.
  • Поляков А.В.
  • Першикова О.И.
RU2031891C1

Реферат патента 2014 года МЕМБРАННЫЙ ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ ДЛЯ ОЧИСТКИ АГРЕССИВНЫХ ЖИДКОСТЕЙ

Изобретение относится к мембранному фильтрующему элементу для очистки агрессивных жидкостей. Мембранный фильтрующий элемент состоит из полого пористого цилиндра 1 из керамического материала, днища 3 и крышки 4, установленных по торцам полого пористого цилиндра 1. На наружную поверхность полого пористого цилиндра 1 нанесена мембрана 5, которая выполнена из наноструктурного керамического материала в виде оксида алюминия (α-Аl2О3), сформированного в потоке частиц эрозионной алюминиевой плазмы в кислородной среде. Кроме того, фильтрующий элемент содержит перфорированную трубу 2, установленную внутри полого пористого цилиндра 1. Изобретение позволяет обеспечить эффективную очистку агрессивных жидкостей при заданном эксплуатационном ресурсе и позволяет подвергать фильтрующий элемент многократной регенерации. 5 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 519 076 C2

1. Мембранный фильтрующий элемент для очистки агрессивных жидкостей, состоящий из полого пористого цилиндра, днища и крышки, установленных по торцам полого пористого цилиндра, и мембраны, нанесенной на наружную поверхность полого пористого цилиндра, отличающийся тем, что устройство дополнительно снабжено перфорированной трубой, установленной внутри полого пористого цилиндра, изготовленного из керамического материала, мембрана выполнена из наноструктурного керамического материала в виде оксида алюминия (α-Аl2О3), сформированного в потоке частиц эрозионной алюминиевой плазмы в кислородной среде.

2. Мембранный фильтрующий элемент по п.1, отличающийся тем, что полый пористый цилиндр и мембрана имеют открытые пористости, равные соответственно 40-45 об.% и 9-11 об.%.

3. Мембранный фильтрующий элемент по п.1, отличающийся тем, что полый пористый цилиндр и мембрана имеют размер сквозных пор, соответственно равный 3-5 мкм и 0,05-0,1 мкм.

4. Мембранный фильтрующий элемент по п.1, отличающийся тем, что в качестве керамического материала полого пористого цилиндра используют спеченную смесь порошка оксида алюминия (α-Аl2О3) и нанопорошка аэрогеля гидрооксида алюминия (АlOOН), представленных в смеси в соотношении 94 об.% и 6 об.%.

5. Мембранный фильтрующий элемент по п.1, отличающийся тем, что в качестве материала перфорированной трубы, днища и крышки используют коррозионно-стойкие хромоникелевые стали - Х18Н10Т, 12Х18Н10Т.

6. Мембранный фильтрующий элемент по п.1, отличающийся тем, что полый пористый цилиндр и перфорированная труба установлены относительно друг друга коаксиально.

Документы, цитированные в отчете о поиске Патент 2014 года RU2519076C2

ПАТРОННЫЙ ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ И ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ 2000
  • Астахов Е.Ю.
  • Жиронкин С.Ф.
  • Горшков А.А.
RU2183493C2
Измеритель скорости вращения вала 1931
  • Аничков И.Н.
SU27498A1
СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО ФИЛЬТРОЭЛЕМЕНТА 1993
  • Горобец Б.Р.
  • Покровский Д.Д.
  • Павлюченков В.О.
  • Левинская М.Х.
  • Симкина Т.В.
  • Поляков А.В.
  • Першикова О.И.
RU2031891C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНЫХ ОКСИДОВ ЭЛЕМЕНТОВ 1994
  • Добровольская Татьяна Николаевна
  • Овсянников Николай Адамович
  • Кузнецов Александр Иванович
  • Грузин Михаил Владимирович
  • Егоров Константин Григорьевич
RU2073638C1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 519 076 C2

Авторы

Мартынов Петр Никифорович

Григорьев Геннадий Васильевич

Асхадуллин Радомир Шамильевич

Григоров Виталий Владимирович

Ягодкин Иван Васильевич

Скворцов Сергей Семенович

Даты

2014-06-10Публикация

2008-09-15Подача