СПОСОБ ТЕСТИРОВАНИЯ ГИС СВЧ Российский патент 2019 года по МПК G01R31/28 

Описание патента на изобретение RU2680161C1

Изобретение относится к контрольно-измерительной технике и может быть использовано при тестировании гибридных интегральных схем (ГИС) СВЧ, в частности, интегральных функциональных устройств.

Известен способ тестирования печатных плат, включающий соединение проводящих элементов платы с внешней цепью контрольно-измерительного прибора посредством щупов в виде игл, оси которых расположены перпендикулярно поверхности платы (см. описание к авторскому свидетельству SU 1665553, опубл. 23.07.1991).

Недостатком известного способа является недостаточная точность тестирования, в частности, в случае использования известного способа для тестирования ГИС СВЧ, вследствие искажения СВЧ сигнала из-за описанного выше соединения проводящих элементов платы с внешней цепью контрольно-измерительного прибора.

Технической проблемой, решаемой настоящим изобретением, является создание способа тестирования ГИС СВЧ, лишенного указанных недостатков.

В результате достигается технический результат, состоящий в обеспечении тестирования ГИС СВЧ с высокой точностью, а также в обеспечении возможности тестирования ГИС СВЧ различных типоразмеров.

Конкретно, указанный технический результат достигается путем осуществления способа тестирования ГИС СВЧ, имеющей контактные площадки, образованные, по меньшей мере, торцевой металлизацией, включающий фиксацию ГИС СВЧ, последующее соединение ее заземляющей поверхности с экраном коаксиального СВЧ, а каждой из упомянутых контактных площадок - с центральным проводником коаксиального СВЧ тракта посредством соответствующего щупа, ось которого параллельна поверхности подложки ГИС СВЧ, в котором осуществляют подведение и снятие СВЧ сигнала с коаксиального СВЧ тракта, а также подведение сигналов управления и питания к тестируемой ГИС СВЧ посредством контактных элементов.

В частном варианте осуществления оси контактных элементов перпендикулярны поверхности подложки ГИС СВЧ.

На фиг. 1 показан общий вид устройства для реализации заявленного способа.

На фиг. 2а, 2б, 2в показана ГИС СВЧ, каждая из контактных площадок которой соединена с соответствующим щупом.

На фиг. 3 показана структурная схема стенда для проведения тестирования ГИС СВЧ.

На фиг. 4 показана тестируемая ГИС СВЧ.

Устройство для реализации заявленного способа, показанное на фиг. 1-3, включает в себя сменный ложемент 1, предназначенный для размещения ГИС СВЧ 2 (размер которого выбирается в соответствии с размером тестируемой ГИС СВЧ 2).

ГИС СВЧ, изображенная на фиг 4, состоит из подложки, включающей в себя плату 2а' и металлическое основание 2а'', и размещенных на плате 2а' проводников и радиоэлектронных элементов (не показаны).

ГИС СВЧ 2 содержит контактные площадки 3а, образованные торцевой металлизацией, заземляющую поверхность 3б, образованную, как торцевой металлизацией, так и металлизацией, образованной на противоположной стороне платы 2а' (относительно стороны, на которой размещены проводники и радиоэлектронные элементы). С противоположных сторон ложемента 1 расположены контактирующие прижимы 4а и 4б.

Упомянутые контактирующие прижимы 4а и 4б, обеспечивают фиксацию ГИС СВЧ 2 и соединение заземляющей поверхности 3б ГИС СВЧ 2 с экраном (условно не показан), а каждой из контактных площадок 3а, образованных торцевой металлизацией - с центральным проводником коаксиального СВЧ тракта 5. Ложемент 1 выполнен с возможностью вертикального перемещения. Контактирующие прижимы 4а и 4б выполнены с возможностью перемещения вдоль поверхности подложки ГИС СВЧ 2, (посредством вращения рукояток 6а и 6б) и содержат щупы 7а и 7б, соответственно, обеспечивающие соединение каждой из контактных площадок 3а ГИС СВЧ 2 с соответствующим центральным проводником коаксиального СВЧ тракта 5. Фиксация и соединение заземляющей поверхности 3б ГИС СВЧ 2 с экраном коаксиального СВЧ тракта 5 осуществляется при помощи прижимов 8а и 8б, прижимаемых, например, плоскими пружинами (не показаны) и регулируемых с помощью рукояток 9а и 9б, соединенных, например, с кулачками (8в и 8 г).

Дополнительно устройство содержит рамку 10, закрепленную на направляющих 11а и 11б с возможностью перемещения в направлении, перпендикулярном поверхности подложки ГИС СВЧ. На рамке 10 закреплена сменная переходная плата 12 с установленными на ней контактными элементами 13. Коаксиальный СВЧ тракт 5 соединен с анализатором цепей 14, а контактные элементы 13 - с источником питания (не показан) и системой управления и контроля 15. Контактные элементы 13 устанавливают на сменной переходной плате 12 в местах, соответствующих топологии ГИС СВЧ 2 и обеспечивающих подведение сигналов управления и питания к соответствующим низкочастотным контактным площадками ГИС СВЧ 2.

Это позволяет (посредством изготовления сменной переходной платы 12 с нужным количеством и расположением контактных элементов 13) производить тестирование различных ГИС СВЧ.

В одном из возможных частных вариантов заявленный способ реализуют следующим образом.

Тестируемую ГИС СВЧ 2, имеющую контактные площадки 3а, образованные торцевой металлизацией и заземляющую поверхность 3б, фиксируют в контактирующем устройстве следующим образом. Устанавливают ГИС СВЧ 2 на ложемент 1 и рукояткой 17 регулируют положение ложемента 1 с установленной на нем ГИС СВЧ 2 по высоте таким образом, чтобы контактные площадки 3а, образованные торцевой металлизацией, располагались напротив щупов 7а и 7б, и фиксируют положение фиксатором 18. Далее, вращая рукоятки 6а и 6б, сводят контактирующие прижимы 4а и 4б до контакта щупов 7а и 7б с соответствующими контактными площадками 3а, образованными торцевой металлизацией, и фиксируют ее посредством прижимов 8а и 8б. Тем самым обеспечивается соединение заземляющей поверхности 3б ГИС СВЧ 2 с экраном, а каждой из контактных площадок 3а - с центральным проводником коаксиального СВЧ тракта (посредством щупов 7а и 7б).

Далее с помощью рычага кривошипно-шатунного механизма 19 опускают рамку до контакта контактных элементов 13 и соответствующих контактных площадок ГИС СВЧ 2, обеспечивая подведение сигналов управления и питания к ГИС СВЧ 2.

Кроме этого, подводят и снимают СВЧ сигнал с коаксиального СВЧ тракта.

Похожие патенты RU2680161C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБРИДНОЙ ИНТЕГРАЛЬНОЙ СХЕМЫ СВЧ-ДИАПАЗОНА 2022
  • Горюнов Иван Валентинович
  • Иовдальский Виктор Анатольевич
  • Терёшкин Евгений Валентинович
  • Федоров Николай Александрович
RU2787551C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБРИДНОЙ ИНТЕГРАЛЬНОЙ СХЕМЫ СВЧ-ДИАПАЗОНА 2022
  • Горюнов Иван Валентинович
  • Иовдальский Виктор Анатольевич
  • Терёшкин Евгений Валентинович
  • Федоров Николай Александрович
  • Аюпов Ильяс Надирович
RU2800495C1
ГИБРИДНАЯ ИНТЕГРАЛЬНАЯ СХЕМА СВЧ-ДИАПАЗОНА 2010
  • Далингер Александр Генрихович
  • Шацкий Сергей Владимирович
  • Иовдальский Виктор Анатольевич
RU2450388C1
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОПОЛОСКОВЫХ ПЛАТ ДЛЯ ГИБРИДНЫХ ИНТЕГРАЛЬНЫХ СХЕМ 2001
  • Иовдальский В.А.
RU2206187C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБРИДНОЙ ИНТЕГРАЛЬНОЙ СХЕМЫ СВЧ ДИАПАЗОНА 2021
  • Горюнов Иван Валентинович
  • Иовдальский Виктор Анатольевич
  • Терёшкин Евгений Валентинович
  • Федоров Николай Александрович
RU2783368C1
ИНТЕГРАЛЬНАЯ СХЕМА СВЧ 2020
  • Непочатов Юрий Кондратьевич
RU2803110C2
ГИБРИДНАЯ ИНТЕГРАЛЬНАЯ СХЕМА СВЧ-ДИАПАЗОНА 2005
  • Иовдальский Виктор Анатольевич
  • Моргунов Виктор Григорьевич
  • Лисицин Александр Андреевич
RU2302056C1
СПОСОБ ИЗГОТОВЛЕНИЯ МОЩНОЙ ГИБРИДНОЙ ИНТЕГРАЛЬНОЙ СХЕМЫ СВЧ-ДИАПАЗОНА 2013
  • Иовдальский Виктор Анатольевич
  • Далингер Александр Генрихович
  • Дудинов Константин Владимирович
  • Кудрова Татьяна Сергеевна
RU2537695C1
УСИЛИТЕЛЬ СВЕРХВЫСОКИХ ЧАСТОТ 1992
  • Смирнов Александр Иванович
RU2006178C1
Мощная гибридная интегральная схема СВЧ-диапазона 2023
  • Иовдальский Виктор Анатольевич
  • Дудинов Константин Владимирович
  • Ганюшкина Нина Валентиновна
RU2817537C1

Иллюстрации к изобретению RU 2 680 161 C1

Реферат патента 2019 года СПОСОБ ТЕСТИРОВАНИЯ ГИС СВЧ

Использование: для тестирования ГИС СВЧ. Сущность изобретения заключается в том, что способ тестирования гибридной интегральной схемы (ГИС) СВЧ, имеющей контактные площадки, образованные, по меньшей мере, торцевой металлизацией, включает фиксацию ГИС СВЧ, последующее соединение ее заземляющей поверхности с экраном коаксиального СВЧ тракта, а каждой из упомянутых контактных площадок - с центральным проводником коаксиального СВЧ тракта посредством соответствующего щупа, ось которого параллельна поверхности подложки ГИС СВЧ, в котором осуществляют подведение и снятие СВЧ сигнала с коаксиального СВЧ тракта, а также подведение сигналов управления и питания к ГИС СВЧ посредством контактных элементов. Технический результат: обеспечение возможности тестирования ГИС СВЧ с высокой точностью, а также в обеспечении возможности тестирования ГИС СВЧ различных типоразмеров. 1 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 680 161 C1

1. Способ тестирования гибридной интегральной схемы (ГИС) СВЧ, имеющей контактные площадки, образованные, по меньшей мере, торцевой металлизацией, включающий фиксацию ГИС СВЧ, последующее соединение ее заземляющей поверхности с экраном коаксиального СВЧ тракта, а каждой из упомянутых контактных площадок - с центральным проводником коаксиального СВЧ тракта посредством соответствующего щупа, ось которого параллельна поверхности подложки ГИС СВЧ, в котором осуществляют подведение и снятие СВЧ сигнала с коаксиального СВЧ тракта, а также подведение сигналов управления и питания к ГИС СВЧ посредством контактных элементов.

2. Способ по п. 1, отличающийся тем, что оси контактных элементов перпендикулярны поверхности подложки ГИС СВЧ.

Документы, цитированные в отчете о поиске Патент 2019 года RU2680161C1

Контактирующее устройство 1988
  • Быковская Валентина Александровна
  • Семенов Василий Михайлович
SU1665553A1
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ НА ЛИТЕЙНЫЕ ФОРМЫ 0
  • Иностранец Клод Фюминье Франци
SU382264A1
US 6911837 B2, 28.06.2005
US 7795889 B2, 14.09.2010
ЗОНД ДЛЯ ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК ПЛАНАРНЫХ ЭЛЕМЕНТОВ ИНТЕГРАЛЬНЫХ СХЕМ 2005
  • Темнов Александр Михайлович
  • Шульга Николай Васильевич
  • Наумов Валерий Львович
  • Дудинов Константин Владимирович
RU2285930C1

RU 2 680 161 C1

Авторы

Тушнов Петр Анатольевич

Невокшенов Александр Владимирович

Посаднев Алексей Юрьевич

Бородина Екатерина Анатольевна

Кошелев Сергей Валентинович

Казаков Андрей Васильевич

Голубев Александр Витальевич

Даты

2019-02-18Публикация

2018-04-27Подача