СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА ГРАФЕНЕ (варианты) Российский патент 2019 года по МПК C23C14/08 C23C14/22 H01L21/20 

Описание патента на изобретение RU2680544C1

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно пленок монооксида европия на графене, и может быть использовано для создания устройств спинтроники, например, инжекторов спин-поляризованного тока.

Структура EuO/Графен является перспективной основой для создания спинтронных устройств в силу уникальных свойств материалов: EuO является ферромагнитным изолятором с большим абсолютным значением магнитного момента на атом, что позволяет использовать его в качестве инжектора спин-поляризованных электронов в проводник. В то же время графен известен высокой проводимостью и большой длиной спиновой диффузии, что делает его хорошим проводником спинового тока. Кроме того, показана возможность разделения носителей заряда по спину в графене за счет эффекта близости с ферромагнитным оксидом.

Известно изобретение «Способ и оборудование для выращивания монокристаллических оксидов, нитридов и фосфидов» (патент № US 7135699 В1), в котором слоистая структура, содержащая редкоземельный оксид, формируется на различных подложках, в т.ч. кремния, и формирует сверхрешетку. В рамках метода может реализовываться выращивание эпитаксиальных слоев монооксида европия на кремниевых подложках при осаждении металла в потоке кислорода. Недостатком изобретения является тот факт, что изобретение ориентировано на диэлектрики с высокой диэлектрической проницаемостью, а потому не учитывает особенности выращивания полупроводниковых слоев EuO, где требуется сохранение валентности ионов Eu2+. Между тем, выращивание EuO требует особого подхода для предупреждения перехода иона европия в трехвалентное состояние и, в то же время, поддержания эпитаксиального роста.

Известна статья «Атомно-слоевое осаждение оксидов металлов на чистый и функционализированный графен» «Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene» (Статья DOI: 10.1021/ja8023059), в которой тонкие пленки оксидов металлов выращиваются на графене путем атомно-слоевого осаждения. Недостатком методики является невозможность получать эпитаксиальные пленки с хорошей кристаллической структурой.

Известна статья «Рост эпитаксиальных тонких пленок оксидов на графене» «Growth of Epitaxial Oxide Thin Films on Graphene» (Статья DOI: 10.1038/srep31511), в которой эпитаксиальные тонкие пленки SrTiO3 выращиваются методом лазерной абляции на графене. Недостатком изобретения является невозможность выращивать стехиометрический EuO с сохранением валентности ионов Eu2+.

Известна статья «Осаждение ферромагнитного изолятора EuO на графен» «Integration of the Ferromagnetic Insulator EuO onto Graphene» (Статья DOI: 10.1021/nn303771f), в которой эпитаксиальные тонкие пленки EuO выращиваются методом молекулярно-лучевой эпитаксии на графене. Недостатком изобретения является наличие значительного количества оксида европия Eu3O4 в пленке.

Известна статья «Структура и магнитные свойства сверхтонких пленок EuO на графене» «Structure and magnetic properties of ultra thin textured EuO films on graphene» (Статья DOI: 10.1063/1.4821953), в которой стехиометрические сверхтонкие пленки EuO получают методом молекулярно-лучевой эпитаксии на подложках Графен/Ir (111). Недостатком данного изобретения является тот факт, что изобретение ориентировано на выращивание пленок толщиной менее 10 монослоев (~2,6 нм), а потому не учитывает особенности роста пленок большей толщины с сохранением стехиометрии.

Известно изобретение «Способ выращивания эпитаксиальных пленок монооксида европия на кремнии» (Патент № RU 2557394), в котором методом молекулярно-лучевой эпитаксии выращивают субмонослой силицида европия при температуре подложки Ts=640÷680°С и давлении потока атомов европия PEu=(1÷7)⋅10-8 Торр, после чего осаждение проводят при температуре подложки Ts=340÷380°С, давлении потока кислорода PO2=(0,2÷3)⋅10-8 Торр и давлении потока атомов европия PEu=(1÷4)⋅10-8 Торр, затем осаждение проводят при температуре подложки Ts=430÷490°С, потоке кислорода с давлением PO2=(0,2÷3)⋅10-8 Торр, и потоке атомов европия с давлением PEu=(1÷7)10-8 Торр. В процедуре также предусмотрен ряд отжигов в вакууме:

- промежуточный отжиг после осуществления первой стадии (Ts=340÷380°С) роста, осуществляемый при температуре Ts=490÷520°С;

- конечный отжиг в диапазоне температур Ts=500÷560°С

Недостатком изобретения является невозможность применения методики при росте пленок EuO на графене.

Раскрытие изобретения

Техническим результатом настоящего изобретения является формирование эпитаксиальных стехиометрических пленок EuO толщиной более 5 нм с высоким кристаллическим совершенством без включений фаз высших оксидов на графене. Полученный результат позволил получить магнитные состояния в графене, что не было достигнуто в предыдущих работах и может быть использовано для создания таких технических устройств, как одноэлектронный транзистор и спиновый фильтр.

Для достижения технического результата предложен способ выращивания эпитаксиальных пленок монооксида европия EuO на графене, заключающийся в том, что методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка формируют субмонослой европия с поверхностной фазой при температуре подложки Ts=20÷100°С и давлении потока атомов европия PEu=(1⋅10-8÷1⋅10-7) Торр, затем осаждают слой монооксида европия EuO при температуре подложки Ts=20÷100°С, давлении потока кислорода PO2=(1⋅10-9÷1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8÷1,1⋅10-7) Торр, удовлетворяющих условию 10⋅PO2≤PEu≤11⋅PO2 до достижения необходимой толщины слоя монооксида европия EuO.

Кроме того, после осаждения пленки монооксида европия EuO осуществляют ее отжиг в вакууме в диапазоне температур Ts=490÷520°С.

Также для достижения того же технического результата предложен способ выращивания эпитаксиальных пленок монооксида европия EuO на графене, заключающийся в том, что методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка формируют субмонослой европия с поверхностной фазой при температуре подложки Ts=20÷100°C и давлении потока атомов европия PEu=(1⋅10-8÷1,1⋅10-7) Торр, затем осаждают слой монооксида европия EuO при температуре подложки Ts=20÷100°С, давлении потока кислорода PO2=(1⋅10-9÷1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8÷1,1⋅10-7) Торр, удовлетворяющих условию 10⋅PO2≤PEu≤11⋅PO2, а затем осаждают слой монооксида европия EuO при температуре подложки Ts=340÷420°С, давлении потока кислорода PO2=(1⋅10-9÷1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8÷1,1⋅10-7) Торр, удовлетворяющих условию 10⋅PO2≤PEu≤15⋅PO2 до достижения необходимой общей толщины слоя монооксида европия EuO.

Кроме того, после осаждения пленки монооксида европия EuO осуществляют ее отжиг в вакууме в диапазоне температур Ts=490÷520°С.

Описанный способ позволяет выращивать однофазные эпитаксиальные пленки EuO на поверхности монослоя графена, что не может быть достигнуто способами, указанными в аналогах. Необходимо отметить, что в технологическом процессе может использоваться любая подложка с осажденным на нее монослоем графена, кроме приведенной в примерах подложки из кремния, не деградирующая при ростовых условиях. Монослой графена предварительно может быть осажден на поверхность различных подложек при помощи как ростовых технологий, так и технологий переноса пленки («Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems» (DOI: 10.1039/c4nr01600a)).

В установках молекулярно-лучевой эпитаксии обычно имеет место неоднозначная трактовка температур подложки. В настоящем изобретении температуры подложки выше 270°С определяются по показаниям инфракрасного пирометра, ниже - по показаниям термопары.

Давлением потока считается давление, измеренное ионизационным манометром Баярда-Альперта, находящимся в положении подложки. При этом, различие энергий ионизации для тех или иных материалов (2,54 и 12,2 эВ для Eu и О2 соответственно) приводит к неоднозначности в оценке реальных плотностей потоков молекулярных пучков (в единицах Атом/м2⋅с) из показаний таких манометров. В нашем случае, опытным путем было установлено, что реальные атомные потоки Eu и кислорода совпадают при показаниях манометра PEu=10⋅PO2.

Краткое описание чертежей

Изобретение поясняется чертежами:

На Фиг. 1 даны изображения дифракции быстрых электронов на исходной поверхности Графен/SiO2/Si до отжига (а) и поверхностной фазе в процессе формирования реконструкции поверхности графена - после завершения процедуры ее формирования (б).

На Фиг. 2 дана характерная картина дифракции быстрых электронов на пленках EuO.

На Фиг. 3 представлена θ-2θ рентгеновская дифрактограмма, полученная на образце SiOx/EuO (80 нм)/Графен/SiO2/Si(100).

На Фиг. 4 показана зависимость намагниченности образца SiOx/EuO(67 нм)/Графен/SiO2/Si(100) от температуры, согласно которой температура Кюри для EuO в пленке составляет 68,3 K, что отвечает данным по объемным монокристаллам и говорит об отсутствии примесей и вакансий кислорода, которые повышают температуру ферромагнитного перехода.

Пример 1. осуществления способа изобретения.

Структура Графен/SiO2/Si помещается в сверхвысоковакуумную камеру (остаточный вакуум Р~1⋅10-10 Торр). Затем, для очистки поверхности графена, осуществляется прогрев структуры до температуры Ts=600°С. Тот факт, что графен очищен, устанавливается с помощью дифракции быстрых электронов (Фиг. 1а). После чего структуру охлаждают до Ts=20÷100°С, затем открывают на 20 сек заслонку ячейки Eu предварительно прогретой до температуры, обеспечивающей давление потока PEu=(1⋅10-8÷1,1⋅10-7) Торр, что соответствует покрытию субмонослоя толщиной 1/6 монослоя.

Во время осаждения чистого Ей на картинах дифракции быстрых элктронов появляются промежуточные рефлексы (Фиг. 16). Эти изменения свидетельствуют об образовании периодичного субмонослойного покрытия металлического европия с поверхностной структурой типа позволяющей провести выращивание стехиометрического EuO.

После формирования поверхностной реконструкции происходит одновременное открытие заслонки ячейки Eu, нагретой до такой температуры, чтобы обеспечивать давление потока атомов Eu PEu=6,2⋅10-8 Торр, и кислорода, давление молекулярного пучка которого составляет PO2=6⋅10-9 Торр, при этом обеспечивается соблюдение условия 10⋅PO2≤PEu≤11⋅PO2. Температура подложки поддерживается на уровне Ts=20÷100°C. Открытие ячейки Eu и кислорода производится на 30 минут, что соответствует толщине пленки EuO в 20 нм при скорости роста пленки 0,66 нм/мин при заданных потоках веществ. Контроль над состоянием пленки производится in situ с помощью дифракции быстрых электронов. Картина дифракции от пленки EuO в процессе роста показана на Фиг. 2. Выход за пределы описанного режима приводит к формированию аморфных или кристаллических высших оксидов Eu2O3 и Eu3O4, или их смеси с EuO.

Поскольку пленка крайне чувствительна к окислению, по окончании роста пленку закрывают сплошным защитным слоем, например, Al или SiOx толщиной не менее 2 нм.

Исследования изготовленных образцов с помощью рентгеновской дифрактометрии (Фиг. 3) показали, что пленки EuO являются текстурированными: в силу симметрийных соображений (интеграция ГЦК решетки с гексагональной) кристаллиты латерально развернуты друг относительно друга на угол 30°, подавляющее большинство из них имеют ориентацию, нормальную к поверхности, (001). Включения с ориентацией (111) также присутствуют, однако оценка из интенсивности пиков показывает, что их количество составляет не более 10% от объема пленки. Положения рефлексов EuO свидетельствуют, что кристаллической решетке пленки EuO соответствует кубическая сингония Fm3m.

Пример 2.

По окончании осаждения 20 нм пленки EuO образец подвергается вакуумному отжигу при температуре Ts=490÷520°С. В остальном способ реализуется, как в Примере 1.

Пример 3.

По окончании осаждения 20 нм пленки EuO при температуре Ts=20÷100°С производится осаждение 30 нм пленки EuO при температуре подложки Ts=340÷420°С. В остальном способ реализуется, как в Примере 1.

Пример 4.

По окончании осаждения пленки EuO образец подвергается вакуумному отжигу при температуре Ts=490÷520°С. В остальном способ реализуется, как в Примере 3.

Таким образом, показана возможность получения эпитаксиальной пленки EuO большой толщины без включений фаз высших оксидов на монослое графена, приводящей к появлению в нем магнитных состояний, что позволит создавать устройства спинтроники, например спиновые фильтры и инжекторы спин-поляризованного тока.

Похожие патенты RU2680544C1

название год авторы номер документа
Способ формирования тонкой пленки монооксида европия на кремниевой подложке с получением эпитаксиальной гетероструктуры EuO/Si 2020
  • Аверьянов Дмитрий Валерьевич
  • Соколов Иван Сергеевич
  • Токмачев Андрей Михайлович
  • Сторчак Вячеслав Григорьевич
RU2739459C1
СПОСОБ СОЗДАНИЯ ИНТЕРФЕЙСА ДЛЯ ИНТЕГРАЦИИ МОНОКРИСТАЛЛИЧЕСКОГО ОКСИДА ЕВРОПИЯ С ГЕРМАНИЕМ 2022
  • Аверьянов Дмитрий Валерьевич
  • Соколов Иван Сергеевич
  • Токмачев Андрей Михайлович
  • Сторчак Вячеслав Григорьевич
RU2793379C1
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА КРЕМНИИ 2014
  • Аверьянов Дмитрий Валерьевич
  • Садофьев Юрий Григорьевич
  • Сторчак Вячеслав Григорьевич
  • Тетерин Петр Евгеньевич
RU2557394C1
СПОСОБ ФОРМИРОВАНИЯ ЭПИТАКСИАЛЬНЫХ ГЕТЕРОСТРУКТУР EuO/Ge 2021
  • Аверьянов Дмитрий Валерьевич
  • Соколов Иван Сергеевич
  • Токмачев Андрей Михайлович
  • Сторчак Вячеслав Григорьевич
RU2768948C1
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНОЙ ПЛЕНКИ ДИСИЛИЦИДА ЕВРОПИЯ НА КРЕМНИИ 2015
  • Аверьянов Дмитрий Валерьевич
  • Сторчак Вячеслав Григорьевич
RU2615099C1
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК ДИСИЛИЦИДА СТРОНЦИЯ НА КРЕМНИИ 2016
  • Аверьянов Дмитрий Валерьевич
  • Королева Анастасия Федоровна
  • Токмачев Андрей Михайлович
  • Сторчак Вячеслав Григорьевич
RU2620197C1
СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНОЙ ПЛЕНКИ МНОГОСЛОЙНОГО СИЛИЦЕНА, ИНТЕРКАЛИРОВАННОГО ЕВРОПИЕМ 2018
  • Аверьянов Дмитрий Валерьевич
  • Токмачев Андрей Михайлович
  • Сторчак Вячеслав Григорьевич
  • Королева Анастасия Федоровна
RU2663041C1
СПОСОБ ПОЛУЧЕНИЯ СПИН-ПОЛЯРИЗОВАННЫХ НОСИТЕЛЕЙ ЗАРЯДА В ГРАФЕНЕ 2019
  • Аверьянов Дмитрий Валерьевич
  • Токмачев Андрей Михайлович
  • Сторчак Вячеслав Григорьевич
  • Соколов Иван Сергеевич
RU2697517C1
Способ получения монослойного силицена 2021
  • Жижин Евгений Владимирович
  • Пудиков Дмитрий Александрович
  • Комолов Алексей Сергеевич
RU2777453C1
СПОСОБ СОЗДАНИЯ УСТОЙЧИВЫХ К ОКИСЛЕНИЮ СВЕРХТОНКИХ ГРАФЕНОВЫХ СТРУКТУР СО СПИН-ПОЛЯРИЗОВАННЫМИ НОСИТЕЛЯМИ ЗАРЯДА 2023
  • Аверьянов Дмитрий Валерьевич
  • Соколов Иван Сергеевич
  • Токмачев Андрей Михайлович
  • Сторчак Вячеслав Григорьевич
  • Парфенов Олег Евгеньевич
RU2805282C1

Иллюстрации к изобретению RU 2 680 544 C1

Реферат патента 2019 года СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА ГРАФЕНЕ (варианты)

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно пленок монооксида европия на графене, и может быть использовано для создания таких устройств спинтроники, как спиновый транзистор и инжектор спин-поляризованных носителей. Способ выращивания эпитаксиальных пленок монооксида европия EuO на графене включает формирование субмонослоя европия с поверхностной фазой методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка при температуре подложки Ts=20-100°С и давлении потока атомов европия PEu=(1⋅10-8-1⋅10-7) Торр, осаждение слоя монооксида европия EuO при температуре подложки Ts=20-100°C, давлении потока кислорода PO2=(1⋅10-9-1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8-1⋅10-7) Торр, удовлетворяющих условию 10⋅PО2≤PEu≤11⋅PO2, до достижения необходимой толщины слоя монооксида европия EuO. В одном из вариантов осуществления изобретения после вышеперечисленых операций осаждают слой монооксида европия EuO при температуре подложки Ts=340-420°С, давлении потока кислорода PO2=(1⋅10-9-1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8-1,5⋅10-7) Торр, удовлетворяющих условию 10⋅PO2≤PEu≤15⋅PO2, до достижения необходимой общей толщины слоя монооксида европия EuO. В частных случаях осуществления изобретения после осаждения пленки монооксида европия осуществляют ее отжиг в вакууме в диапазоне температур Ts=490-520оС. Обеспечивается формирование эпитаксиальных стехиометрических пленок монооксида европия толщиной более 5нм с высоким кристаллическим совершенством без включений фаз высших оксидов на графене, что позволяет получить магнитные состояния в графене для создания таких технических устройств, как одноэлектронный транзистор и спиновый фильтр. 2 н. и 2 з.п. ф-лы, 4 ил., 4 пр.

Формула изобретения RU 2 680 544 C1

1. Способ выращивания эпитаксиальных пленок монооксида европия EuO на графене, включающий формирование субмонослоя европия с поверхностной фазой методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка при температуре подложки Ts=20-100°С и давлении потока атомов европия PEu=(1⋅10-8-1⋅10-7) Торр, осаждение слоя монооксида европия EuO при температуре подложки Ts=20-100°C, давлении потока кислорода PO2=(1⋅10-9-1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8-1⋅10-7) Торр, удовлетворяющих условию 10⋅PО2≤PEu≤11⋅PO2, до достижения необходимой толщины слоя монооксида европия EuO.

2. Способ по п. 1, отличающийся тем, что после осаждения пленки монооксида европия EuO осуществляют ее отжиг в вакууме в диапазоне температур Ts=490-520°С.

3. Способ выращивания эпитаксиальных пленок монооксида европия EuO на графене, включающий формирование субмонослоя европия с поверхностной фазой методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка при температуре подложки Ts=20-100°С и давлении потока атомов европия PEu=(1⋅10-8-1⋅10-7) Торр, осаждение слоя монооксида европия EuO при температуре подложки Ts=20-100°С, давлении потока кислорода РО2=(1⋅10-9-1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8-1,1⋅10-7) Торр, удовлетворяющих условию 10⋅PO2≤PEu≤11⋅PO2, после чего осаждают слой монооксида европия EuO при температуре подложки Ts=340-420°С, давлении потока кислорода PO2=(1⋅10-9-1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8-1,5⋅10-7) Торр, удовлетворяющих условию 10⋅PO2≤PEu≤15⋅PO2, до достижения необходимой общей толщины слоя монооксида европия EuO.

4. Способ по п. 3, отличающийся тем, что после осаждения пленки монооксида европия EuO осуществляют ее отжиг в вакууме в диапазоне температур Ts=490-520°С.

Документы, цитированные в отчете о поиске Патент 2019 года RU2680544C1

СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА КРЕМНИИ 2014
  • Аверьянов Дмитрий Валерьевич
  • Садофьев Юрий Григорьевич
  • Сторчак Вячеслав Григорьевич
  • Тетерин Петр Евгеньевич
RU2557394C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАЩИТНОГО ДИЭЛЕКТРИЧЕСКОГО СЛОЯ 2014
  • Аверьянов Дмитрий Валерьевич
  • Садофьев Юрий Григорьевич
  • Сторчак Вячеслав Григорьевич
  • Тетерин Петр Евгеньевич
RU2574554C1
СПОСОБ ПОЛУЧЕНИЯ ТОНКОПЛЕНОЧНОГО ОКСИДНОГО МАТЕРИАЛА, ЛЕГИРОВАННОГО ИОНАМИ ФЕРРОМАГНИТНОГО МЕТАЛЛА, ДЛЯ СПИНТРОНИКИ 2007
  • Борухович Арнольд Самуилович
  • Игнатьева Нелли Ивановна
  • Галяс Анатолий Иванович
  • Янушкевич Казимир Иосифович
  • Демиденко Олег Федорович
  • Стогний Александр Иванович
RU2360317C2
CN 105778132 A, 20.07.2016
US 20140151770 A1, 05.06.2014.

RU 2 680 544 C1

Авторы

Соколов Иван Сергеевич

Аверьянов Дмитрий Валерьевич

Токмачев Андрей Михайлович

Сторчак Вячеслав Григорьевич

Даты

2019-02-22Публикация

2018-06-05Подача