Способ получения заготовки из титановых сплавов для изделий, испытывающих переменные механические нагрузки Российский патент 2019 года по МПК C22F1/18 B21J5/00 

Описание патента на изобретение RU2681033C2

Изобретение относится к области технологических процессов термомеханической обработки сплавов на основе титана с (α+β) структурой и может быть использовано для создания заготовок, имеющих высокую энергоемкость, мелкодисперсную микроструктуру с размером зерна (0,5-5,0) мкм, для изделий испытывающих переменные механические нагрузки.

Известно техническое решение, в котором проведены исследования титанового сплава, для использования в качестве волноводов высокоамплитудных акустических систем. Волновод испытывает высокочастотные переменные напряжения сжатия и растяжения. В данной работе исследовался промышленный сплав ПТ-3В (4,66 масс. % Al, 1,92 масс. % V) с исходной крупнозернистой структурой (200-400) мкм и ультромелкозернистой (УМЗ) структурой 0,37 мкм, полученной методом интенсивной пластической деформации - методом всестороннего прессования в интервале температур 1073-773 К. Данный сплав широко используется для изготовления акустических волноводов, ультразвуковых систем различного назначения. (Е.Н. Найденкин и др. «Титановый сплав ПТ-3В с ультрадисперсной структурой для волноводов высокоамплитудных акустических систем». Вопросы материаловедения, 2009 г. №4, стр15-19.). Выполнено сравнительное исследование структуры, механических и акустических свойств сплава ПТ-3В в крупнокристаллическом и ультрамелкозернистом состояниях. Методом всестороннего прессования в титановом сплаве ПТ-3В была сформирована однородная ультрамелкозернистой структура со средним размером элементов зеренносубзеренной структуры 0,37 мкм. В результате существенно повысились механические свойства исследуемого материала. Так, микротвердость ультрамелкозернистого сплава увеличивается примерно на 25%, а разрушение волноводов из этого материала происходит при подводимой мощности ультразвука в 1,5-2 раза большей по сравнению с волноводом из крупнозернистого сплава. Значительно увеличивается ресурс работы при многоцикловой нагрузке таких волноводов в условиях повышенной плотности мощности ультразвуковой системы.

Недостаток использования сплавов на основе титана ПТ-3В в качестве волновода заключается в недостаточном ресурсе работы в условиях повышенной частоты ультразвуковых колебаний (УЗК).

Традиционно упрочнение титановых сплавов достигается их легированием, термомеханической обработкой, т.е. за счет управления химическим составом и фазово-структурными превращениями. Новым эффективным способом повышения физико-механических свойств промышленных металлов и сплавов является создание в них ультрамелкозернистых (УМЗ) структур с использованием методов интенсивной пластической деформации (ИПД), которые позволяют достигать очень больших пластических деформаций при относительно низких температурах (обычно 0,3…0,4Тпл, К) в условиях высоких приложенных давлений. (Валиев Р.З, Александров И.В. Наноструктурные материалы, подвергнутые интенсивной пластической деформации. М.: Логос, 2000. - 272 с.). Проведенные исследования (Малыгин Г.А. Физика твердого тела. 6 (49), стр. 961-982, 2007 г.) показывают, что получение ультрамелкозернистой структуры со средним размером зерна менее 1 мкм в конструкционных сплавах позволяет, с одной стороны, значительно повысить их характеристики прочности, сопротивление усталости, износостойкость, с другой стороны, практическое применение таких материалов сдерживает рядом недостатков, к которым в первую очередь следует отнести пониженную термостабильность, ударную вязкость, циклическую трещиностойкость, повышенную чувствительность к концентраторам напряжений, а также порообразование при циклических нагрузках в зоне наибольших напряжений (приповерхностной зоне).

Известен способ получения заготовок, включающий нагрев заготовки (α+β) титанового сплава на (20-30)°С ниже температуры полиморфного превращения и последующее деформирование с различной степенью деформации (Патент 1225662 по заявке: 3576642 от 12.04.1983 г. МПК C21F 1/18).

Данный способ не позволяет получить необходимую макро- и микроструктуру в заготовке, что отрицательно сказывается на качестве получаемых изделий.

Известен способ штамповки заготовки из титановых сплавов, включающий по меньшей мере два перехода предварительной штамповки и окончательную штамповку, нагрев заготовки под каждый переход штамповки и охлаждение ее после каждого перехода, отличающийся тем, что нагрев заготовки под каждый переход предварительной штамповки осуществляют до температуры выше температуры начала полиморфного превращения, охлаждение заготовки после каждого перехода предварительной штамповки осуществляют до температуры ниже температуры конца полиморфного превращения, а окончательную штамповку производят в интервале температур начала полиморфного превращения и полного полиморфного превращения (Патент 2229952 по заявке: 2002130537 от 15.11.2002 г. МПК B21J 5/00). Данное техническое решение принято в качестве прототипа по способу ковки сплава на основе титана.

Данный способ не позволяет получить необходимую макро- и микроструктуру в заготовке, что отрицательно сказывается на качестве получаемых изделий.

Задачей данного технического решения является получения оптимальной структуры заготовки для изделий испытывающих циклические нагрузки.

В процессе решения поставленной задачи достигается технический результат заключающийся в снижении зернистости, получении мелкодисперсной микроструктуры с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сетки α-фазы на границах β зерен, с высокими значениями предела прочности на разрыв, qB, не менее 1200МПа, при соотношении параметров σ0,2B, не менее 0,9, где σ0,2 - предел текучести, МПа, σB - предел прочности, МПа.

Указанный технический результат достигается способом получения заготовки из (α+β)-титановых сплавов для изделий, испытывающих переменные механические нагрузки, включающий многоэтапную ковку заготовки, при этом на первом и третьем этапах ковки заготовку из титанового сплава нагревают до температуры T1, которая выше температуры полного полиморфного превращения Tβ+40≤T1≤Tβ+130, где Тβ - температура фазового альфа-бета перехода, на втором этапе нагревают заготовку из титанового сплава до температуры Т2, которая ниже полиморфного превращения Тβ-60≤Т2≤Тβ, на всех этапах ковку проводят с деформацией 1,1-1,5 в течение 10-20 мин при вращении заготовки вокруг своей оси по схеме, включающей один полный оборот заготовки с поворотом на 90°, второй полный оборот с поворотом заготовки на 45°, третий полный оборот с поворотом заготовки на 22°, причем после каждого этапа проводят закалку или охлаждение заготовки в воду, при этом после третьего этапа все последующие этапы ковки проводят при нагреве заготовки до температуры Тβ-60≤Т2≤Тβ и с деформацией 1,1-1,6 в течение 10-20 мин при повороте заготовки вокруг своей оси на 90°, а этапы ковки, проводимые после третьего этапа, повторяют до получения равномерной, мелкодисперсной микроструктуры с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве 40-80% в трансформированной β-матрице без образования непрерывной сетки α-фазы на границах β зерен, затем полученную заготовку подвергают отжигу при температуре (830-870)°С в течение 40-80 минут и охлаждают.

Известно, что наибольшее влияние на механические свойства оказывают такие параметры микроструктуры, как форма, размеры и объемное соотношение первичной и вторичной α-фазы. Используя интенсивную пластическую деформацию (ИПД) в основе которой лежит реализация больших деформаций в условиях высоких квазигидростатических давлений в титановых сплавах формируется субмикрокристаллическая (СМК) структура за счет сильной фрагментации и разориентации структурных единиц в ходе реализации ротационных мод деформации. Одним из методов формирования СМК-структур в массивных образцах из титановых сплавов, также относящихся к методам ИПД, является всесторонняя ковка, обычно сопровождаемая динамической рекристаллизацией в небольших поверхностных объемах заготовки. (Листвин Г.П., Саблина М.В. «Влияние условий деформации и термической обработки на формирование структуры и механические свойства полуфабрикатов из сплава ВТ6», Технология легких сплавов. 1989. №12. С. 55-59).

Нагрев заготовки на первом и третьем этапах ковки до температуры выше температуры начала полиморфного превращения обусловлен необходимостью достижения максимальной технологической пластичности сплава и формирования фрагментированной субструктуры с большеугловыми границами, сопровождающейся развитием динамической рекристаллизации по механизму Кана-Бюргерса, согласно которому зародышем рекристаллизации является субзерно, так и с развитием динамической рекристаллизации по механизму Бейли-Хирша, когда образование рекристаллизованных зерен происходит в виде «ожерелья» по границам исходных деформированных зерен. При этом для получения определенной доли зерен субмикронного размера в объемных заготовках важно сохранить их закалкой из β-области на первых этапах высокотемпературной термомеханической обработки (ВТМО). Далее сплав с такой микроструктурой состоящей из зерен субмикронного и микронного размера подвергнут всесторонней ковке при Т2, где Тβ-60≤Т2≤Тβ, с большой степенью деформации с целью измельчения зерна до (0,5-5,0) мкм и получения равновесной структуры α-фазы и вытянутой альфа в трансформированной β матрице.

Закалка или быстрое охлаждение заготовок после первых трех этапов ковки обусловлено необходимостью измельчения зерна не только деформацией, но и фазовым наклепом. Нагрев заготовки на этапах ковки до температуры начала полиморфного превращения и полного полиморфного превращения обусловлен тем, что в этом интервале достигается эффект двойного измельчения зерна пластической деформацией и фазовой перекристаллизацией. Многократное термоциклирование и совмещение операций деформирования, фазовой перекристаллизации и рекристаллизации позволяет получить оптимальную микроструктуру в изделии с высоким комплексом физико-механических свойств.

Повышение прочности сплава при циклических нагрузках в предлагаемом способе ковки сплава на основе титана для изделий испытывающий механические циклические нагрузки, достигается за счет создания разнозеренной структуры, имеющей повышенную сопротивляемость разрушению при циклических нагрузках изменяющихся с высокой частотой Сплав должен иметь не только УМЗ структуру, он должен иметь также разнозеренную структуру максимально противостоящую разрушению при воздействии на материал высокочастотных ультразвуковых колебаний.

При разработке структуры сплава авторами были использованы основные положения механики разрушения твердых тел. Рассматривался механизм разрушения применительно к титановому сплаву имеющего различную структуру и подвергаемого циклическим напряжениям сжатия и растяжения с высокой частотой. Прежде всего, необходимо отметить, что ультразвуковые колебания в волноводе создают зоны сжатия и растяжения, величина данных зон напряжений в материале зависит от параметров УЗК, частоты и амплитуды. С позиции механики разрушения, процесс разрушения волновода из титанового сплава в результате действия ультразвуковых колебаний многостадиен. Он начинается в дефектных местах кристаллической решетки, где имеются нарушения ее периодичности, и проходит последовательно следующие стадии: скопление дефектов, приводящее к локальной концентрации напряжений; образование зародышевых микротрещин, т.е. разрывов оплошностей кристаллической решетки в отдельных участках; развитие и объединение зародышевых микротрещин вплоть до образования магистральных трещин разрушения; разрушение волновода на несколько частей.

Свойства структуры сплава должны быть такими, что бы максимально сопротивляться разрушению на каждой из указанных стадии. Очевидно, что на стадии скопления дефектов, сплав с высокой зернистостью 200-400 мкм, имеющий больший размер кристаллитов, и больший размер границ между отдельными кристаллами будет противостоять УЗК лучше, чем сплав с УМЗ структурой имеющий значительно больше дефектов в структуре. Но стадия образования зародышевых микротрещин, т.е. разрывов сплошностей кристаллической решетки в отдельных участках, в сплаве с УМЗ структурой от действия ультразвуковых колебаний будет проходить значительной дольше, чем в сплавах имеющих большой размер зерна. Практически данная стадия и определяет работоспособность сплава испытывающего переменные механические нагрузки. Это обусловлено способностью УМЗ структуры противостоять напряжениям, возникающим в материале при УЗК, микрообъемы которого периодически сжимаются и растягиваются. Чтобы получить разрыв сплошностей в крупнозернистом сплаве, размером 400 мкм, достаточно транскристаллитного разрушения одного крупного зерна, или интеркристаллитного разрушения границ двух зерен, тогда как в сплаве с УМЗ структурой для этого микроразрыву потребуется пройти 1000 зерен и межзеренных границ. Следовательно, и энергии на получение такого разрыва сплошностей потребуется в 1000 раз больше. Размеры разрывов сплошностей в крупнозернистом сплаве будут на два-три порядка больше, чем в сплаве с УМЗ структурой, а, следовательно, их подрастание до микротрещин и выход на поверхность будет происходить быстрее.

Иной характер разрушения титанового сплава происходит в сплаве имеющем разномерную, мелкодисперсную микроструктуру с размером зерна (0,5-5,0) мкм, содержащую равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сети α-фазы на границах β зерен.

На стадии скопления дефектов, в которой происходит увеличение локальной концентрации напряжений, сплав с разнозеренной структурой имеющий в структуре субмелкие и мелкие зерна будет противостоять значительно дольше, чем сплав, имеющий УМЗ структуру. Это объясняется тем, что структура сплава имеет меньшую дефектность. На второй стадии разрушения, зародившиеся микроразрывы на субмелких зернах, при своем подрастании будут тормозится на мелких зернах, в то время как на сплавах с УМЗ период торможения будет значительно меньше, так как зародившийся микроразрыв соизмерим с размером соседнего зерна. Наличие в структуре зерен с различным размером из различных фаз, имеющих различные параметры кристаллических решеток, будут создавать в сплаве границы зерен с различной степенью напряженности, что создаст дополнительное препятствие при развитии микротрещин. Таким образом, разнозернистая структура сплава имеет большую способность сопротивляться разрушению на каждой указанной ранее стадии механизма разрушения.

Таким образом, разнородная мелкозернистая микроструктура в титановых сплавах позволяет повысить технологические свойства изделий из данного сплава, обеспечить высокие механические свойства. Пример реализации способа.

Реализация способа ковки была реализована в два этапа. На первом этапе изготавливались пять заготовок из титанового сплава с сплава α+β)-структурой. Использовали поковки из двухфазного титанового сплава имеющих различный состав химических элементов. Состав поковок приведен в таблице 1.

Ковку проводили по следующему режиму.

На первом этапе ковки нагревали заготовку до температуры выше температуры полного полиморфного превращения T1=1100°С, проводили ковку с деформацией 1,27 в течение 15 минут при вращении заготовки по схеме один полный оборот с поворотом каждый раз на 90°, второй полный оборот с поворотом заготовки каждый раз на 45°, третий полный оборот с поворотом заготовки каждый раз на 22°, после проведения ковки проводили закалку в воду. На втором этапе нагревали заготовку до температуры ниже температуры полиморфного превращения Т2=950°С, проводили ковку с деформацией 1,20 в течение 15 минут, при вращении заготовки по схеме, один полный оборот с поворотом каждый раз на 90°, второй полный оборот с поворотом заготовки каждый раз на 45°, третий полный оборот с поворотом заготовки каждый раз на 22°, после проведения ковки проводили быстрое охлаждение в воду. На третьем этапе нагревали заготовку до температуры выше температуры полиморфного превращения T1=1150°С, проводили ковку с деформацией 1,24 в течение 20 минут, при вращении заготовки по схеме, один полный оборот с поворотом каждый раз на 90°, второй полный оборот с поворотом заготовки каждый раз на 45°, третий полный оборот с поворотом заготовки каждый раз на 22°, после проведения ковки проводили закалку в воду. На следующих этапах нагревали заготовку до температуры ниже температуры полиморфного превращения Т2=950°С, проводили ковку с деформацией 1,50 в течение 5-10 минут, при вращении заготовки по схеме, один полный оборот с поворотом каждый раз на 90°, после истечения времени ковки, заготовку подогревали до необходимой температуры, и процесс ковки повторяли. Такой процесс проводили до получения необходимой структуры заготовки. После этого заготовку подвергали отжигу при температуре 870°С в течение 70 минут, затем заготовку охлаждали на воздухе.

В результате этого в заготовках номер 2, 3, 4 была получена разномерная, мелкодисперсная микроструктуру с размером зерна (0,5-5,0) мкм, содержащую равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сетки α-фазы на границах β зерен.

Исследования механических свойств на растяжение и кручение проводили на универсальной крутильно-разрывной машине МИ-40КУ совмещенной с ПК.

Предлагаемый способ получения титанового сплава позволяет получить оптимальную микроструктуру титанового сплава в изделии с высоким комплексом физико-механических свойств. Результаты исследований представлены в таблице 2.

Как видно из таблицы, способ ковки позволяет получить высокие физико-механические показатели титанового сплава временное сопротивление разрыву σв, условный предел текучести σ0,2 и относительное сужение ψ, относительное удлинение δ и структуру с размером зерна 0,5-5,0 мкм.

На втором этапе реализации способа ковки были определены оптимальные технологические режимы ковки. Оптимальные режимы определяли на сплаве №3 таблица 1. Результаты исследований приведены в таблице 3.

Анализ результатов таблицы 3 показывает, что технологические режимы, заявленные в способе ковки, являются оптимальными.

Заготовки, полученные описанным выше способом, имеют высокую энергоемкость, высокие технологические и механические свойства, разнозернистую мелкодисперсную микроструктуру, способную сопротивляться разрушениям. Заготовки могут быть использованы для изготовления изделий испытывающих переменные механические нагрузки, например в конструкциях летательных аппаратов.

Похожие патенты RU2681033C2

название год авторы номер документа
Способ получения заготовки из титановых сплавов для изделий, испытывающих переменные механические нагрузки 2017
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
RU2664346C1
Сплав на основе титана и способ изготовления заготовки для изделий, испытывающих циклические нагрузки 2017
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
RU2691690C2
Сплав на основе титана 2017
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
RU2681030C2
Сплав на основе титана 2017
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
RU2691787C2
Способ выбора титанового сплава для ультразвукового волновода 2017
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
RU2664665C1
Сплав на основе титана 2017
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
RU2675673C2
Сплав на основе титана 2017
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
RU2691692C2
Способ выбора титанового сплава для ультразвукового волновода 2017
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
RU2656259C1
Способ штамповки заготовок с ультрамелкозернистой структурой из двухфазных титановых сплавов 2019
  • Семенова Ирина Петровна
  • Рааб Георгий Иосифович
  • Рааб Арсений Георгиевич
  • Дьяконов Григорий Сергеевич
  • Артюхин Юрий Васильевич
  • Измайлова Наиля Федоровна
RU2707006C1
СПОСОБ КОВКИ ТЕРМОМЕХАНИЧЕСКОЙ ДЕТАЛИ, ВЫПОЛНЕННОЙ ИЗ ТИТАНОВОГО СПЛАВА 2009
  • Бодекен,Ксавье
  • Леконт,Жильбер
RU2510680C2

Реферат патента 2019 года Способ получения заготовки из титановых сплавов для изделий, испытывающих переменные механические нагрузки

Изобретение относится к термомеханической обработке сплавов на основе титана с (α+β) структурой и может быть использовано для создания заготовок, имеющих высокую энергоемкость, мелкодисперсную микроструктуру с размером зерна (0,5-5,0) мкм, для изделий, испытывающих переменные механические нагрузки. Способ получения заготовки из (α+β) титановых сплавов для изделий, испытывающих переменные механические нагрузки, включает многоэтапную ковку заготовки. На первом и третьем этапах ковки заготовку из титанового сплава нагревают до температуры T1, которая выше температуры полного полиморфного превращения Tβ+40≤T1≤Tβ+130, где Тβ - температура фазового альфа-бета перехода, на втором этапе нагревают заготовку из титанового сплава до температуры Т2, которая ниже полиморфного превращения Тβ-60≤Т2≤Тβ. На всех этапах ковку проводят с деформацией 1,1-1,5 в течение 10-20 мин при вращении заготовки вокруг своей оси по схеме, включающей один полный оборот заготовки с поворотом на 90°, второй полный оборот с поворотом заготовки на 45°, третий полный оборот с поворотом заготовки на 22°, причем после каждого этапа проводят закалку или охлаждение заготовки в воду, при этом после третьего этапа все последующие этапы ковки проводят при нагреве заготовки до температуры Тβ-60≤Т2≤Тβ и с деформацией 1,1-1,6 в течение 10-20 мин при повороте заготовки вокруг своей оси на 90°. Этапы ковки, проводимые после третьего этапа, повторяют до получения равномерной, мелкодисперсной микроструктуры с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве 40-80% в трансформированной β-матрице без образования непрерывной сетки α-фазы на границах β зерен, затем полученную заготовку подвергают отжигу при температуре (830-870)°С в течение 40-80 минут и охлаждают. Заготовки характеризуются высокими значениями механических свойств и энергоемкости. 3 табл., 5 пр.

Формула изобретения RU 2 681 033 C2

Способ получения заготовки из (α+β) титановых сплавов для изделий, испытывающих переменные механические нагрузки, включающий многоэтапную ковку заготовки, отличающийся тем, что на первом и третьем этапах ковки заготовку из титанового сплава нагревают до температуры T1, которая выше температуры полного полиморфного превращения Tβ+40≤T1≤Tβ+130, где Тβ - температура фазового альфа-бета перехода, на втором этапе нагревают заготовку из титанового сплава до температуры Т2, которая ниже полиморфного превращения Тβ-60≤Т2≤Тβ, на всех этапах ковку проводят с деформацией 1,1-1,5 в течение 10-20 мин при вращении заготовки вокруг своей оси по схеме, включающей один полный оборот заготовки с поворотом на 90°, второй полный оборот с поворотом заготовки на 45°, третий полный оборот с поворотом заготовки на 22°, причем после каждого этапа проводят закалку или охлаждение заготовки в воду, при этом после третьего этапа все последующие этапы ковки проводят при нагреве заготовки до температуры Тβ-60≤Т2≤Тβ и с деформацией 1,1-1,6 в течение 10-20 мин при повороте заготовки вокруг своей оси на 90°, а этапы ковки, проводимые после третьего этапа, повторяют до получения равномерной, мелкодисперсной микроструктуры с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве 40-80% в трансформированной β-матрице без образования непрерывной сетки α-фазы на границах β зерен, затем полученную заготовку подвергают отжигу при температуре (830-870)°С в течение 40-80 минут и охлаждают.

Документы, цитированные в отчете о поиске Патент 2019 года RU2681033C2

СПОСОБ ИЗГОТОВЛЕНИЯ ПРОМЕЖУТОЧНОЙ ЗАГОТОВКИ ИЗ (АЛЬФА+БЕТА)- ТИТАНОВЫХ СПЛАВОВ 2004
  • Тетюхин В.В.
  • Левин И.В.
  • Шибанов А.С.
  • Трубочкин А.В.
  • Ледер М.О.
  • Кузьминых Н.П.
RU2266171C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ЗАГОТОВКИ, ВЫПОЛНЕННОЙ ИЗ ТИТАНА ИЛИ СПЛАВА ТИТАНА 2011
  • Форбз Джоунс, Робин М.
  • Мантион, Джон В.
  • Де Соуза, Урбан Дж.
  • Тома, Жан-Филипп
  • Минисандрам, Рамеш С.
  • Кеннеди, Ричард Л.
  • Дэвис, Р. Марк
RU2581331C2
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТЫХ ЗАГОТОВОК ИЗ МЕТАЛЛОВ И СПЛАВОВ 2009
  • Шундалов Владимир Алексеевич
  • Иванов Владимир Юрьевич
  • Латыш Владимир Валентинович
  • Михайлов Игорь Николаевич
  • Павлинич Сергей Петрович
  • Шарафутдинов Альфред Васимович
RU2393936C1
JP 2016503126 A, 01.02.2016
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1

RU 2 681 033 C2

Авторы

Алтынбаев Сергей Владимирович

Рассказов Алексей

Митяшкин Олег Александрович

Уэлст Джонатон Уолтер Томас

Даты

2019-03-01Публикация

2017-05-12Подача