СПОСОБ ОПРЕДЕЛЕНИЯ АЭРОДИНАМИЧЕСКОГО ОБЛИКА ЛЕТАТЕЛЬНОГО АППАРАТА С ВОЗДУШНО-РЕАКТИВНЫМ ДВИГАТЕЛЕМ Российский патент 2019 года по МПК B64F5/00 G06F17/50 B64D27/02 

Описание патента на изобретение RU2683017C1

Изобретение относится к способам проектирования конструкции летательных аппаратов, например самолетов и высокоскоростных ракет, оснащенных воздушно-реактивными двигателями.

Разработка аэродинамического облика летательного аппарата является сложным итерационным процессом, направленным на поиск рационального сочетания параметров планера и воздухозаборного устройства (ВЗУ), оптимизируемых по своим частным критериям. Оптимизация планера ведется по критерию «максимальное аэродинамическое качество» (где Cxopt - оптимальный коэффициент сопротивления, Cyopt - оптимальный коэффициент подъемной силы) на крейсерском режиме полета для минимизации потребной тяги и, соответственно, расхода топлива. Воздухозаборное устройство оптимизируется, в первую очередь, по критерию «расход воздуха» GB, повышенные значения которого необходимы для реализации потребных запасов тяги и повышения удельного импульса за счет обеднения смеси и повышения полноты сгорания топлива.

Но, как показала практика, при таком подходе попытки улучшения воздухозаборного устройства приводят к значительному ухудшению внешней аэродинамики, а улучшение аэродинамических характеристик планера (зачастую за счет уменьшения площади входа воздухозаборного устройства) приводит к «вырождению» силовой установки из-за уменьшения импульса и из-за невозможности обеспечить тепловой режим ее работы (работа на малых коэффициентах избытка воздуха в камере сгорания αКС).

Известен способ общего проектирования управляемых ракет [1], ориентированный на многоуровневую производительность. Способ общего проектирования позволяет решение широкого спектра задач проектирования, в том числе и проектирование внешнего облика ракеты.

Способ общего проектирования ракет обладает упомянутым выше недостатком и не позволяет добиться оптимизации планера и воздухозаборного устройства одновременно.

Известны методы проектирования самолетов [2], включая методы проектирования аэродинамической компоновки самолетов, а также критерии и методы оценки проектных и конструкторских решений при проектировании самолетов. В состав описанных в источнике [2] методов входит способ проектирования аэродинамической компоновки, наиболее близкий к настоящему изобретению и выбранный в качестве прототипа.

Недостатком способа проектирования аэродинамической компоновки является недостаточная эффективность оптимизации за счет того, что в числе критериев оценки проектных и конструкторских решений отсутствует критерий, позволяющий обеспечить оптимизацию планера и воздухозаборного устройства одновременно.

Технической проблемой, на решение которой направлено изобретение, является создание способа определения аэродинамического облика летательного аппарата с воздушно-реактивным двигателем повышенной эффективности, позволяющего сочетать оптимизацию планера с оптимизацией воздухозаборного устройства двигателя.

Техническая проблема решается за счет того, что определяют базовый аэродинамический облик летательного аппарата, на основе базового аэродинамического облика летательного аппарата создают N>1 отличных друг от друга вариантов аэродинамического облика, производят расчет аэродинамических характеристик для каждого из N вариантов аэродинамического облика, при этом определяют интегральный критерий оптимизации для каждого варианта аэродинамического облика, и выбирают вариант аэродинамического облика, для которого KO имеет максимальное значение; при этом GB - оптимальный расход воздуха двигателя, Cxopt - оптимальный коэффициент сопротивления.

Техническим результатом способа определения аэродинамического облика летательного аппарата с воздушно-реактивным двигателем является повышение эффективности оптимизации процесса создания облика летательного аппарата с воздушно-реактивным двигателем за счет использования интегрального критерия-показателя KO для быстрой и безошибочной экспертной оценки конкурирующих компоновок, что, в свою очередь, приводит к сокращению временных и финансовых затрат при формировании облика летательного аппарата, упрощению выбора направлений развития существующих и альтернативных разработок.

При описании способа определения аэродинамического облика летательного аппарата с воздушно-реактивным двигателем использованы следующие обозначения:

Сх - коэффициент сопротивления;

Cxopt - оптимальный коэффициент сопротивления;

Су -коэффициент подъемной силы;

Cyopt - оптимальный коэффициент подъемной силы;

g - ускорение свободного падения;

GB - оптимальный расход воздуха - критерий оптимизации «расход воздуха»;

Н - высота полета летательного аппарата;

J - удельный импульс;

Kmax - критерий оптимизации «максимальное аэродинамическое качество»;

KO - интегральный критерий оптимизации;

L - стехиометрический коэффициент топлива;

m - масса летательного аппарата;

Р - тяга двигательной установки;

qt - секундный расход воздуха;

V - скорость полета летательного аппарата;

αКС - коэффициент избытка воздуха в камере сгорания.

Способ определения аэродинамического облика летательного аппарата с воздушно-реактивным двигателем заключается в следующем. Исходя из заданных тактико-технических требований, определяют базовый аэродинамический облик летательного аппарата, в том числе выбирают базовую аэродинамическую схему, тип и расположение входа в воздухозаборное устройство, определяют габаритные размеры, массу га летательного аппарата, задают скорость V и высоту полета Н, которые будут общими для всех возможных вариантов. Основные принципы определения базового аэродинамического облика для самолетов приведены в [2], стр. 94-158, основные принципы для высокоскоростных ракет аналогичны.

На основе базового аэродинамического облика создают любым известным способом или способами (например, как описано в [2], стр. 182-203, 364-419, 423-439) N различных вариантов аэродинамического облика, отличающихся друг от друга геометрическими параметрами фюзеляжа, аэродинамических поверхностей, воздухозаборного устройства (включая параметры входа в воздухозаборное устройство, центрального тела, канала воздухозаборного устройства), соотношениями геометрических параметров, взаимным расположением элементов, прочими геометрическими особенностями (при этом N>1, максимальное значение N не ограничено, чем выше N, тем достовернее результат способа определения аэродинамического облика летательного аппарата с воздушно-реактивным двигателем и тем больше временные затраты на его осуществление).

Любым известным способом, например, с помощью специализированного программного обеспечения (пример приведен в [2], стр. 546-578), производят расчет аэродинамических характеристик для каждого из N вариантов аэродинамического облика, в том числе Сх, Cxopt, Су, Cyopt, GB, J.

Для каждого из N вариантов аэродинамического облика определяют интегральный критерий оптимизации KO.

Вывод критерия KO:

С одного кг топлива при стехиометрическом коэффициенте L и при коэффициенте избытка воздуха в камере сгорания αКС получаем удельный импульс J . Таким образом, при секундном расходе воздуха qt=GB тяга будет равна:

а секундный расход будет равен:

т.е. расход топлива при равных расходах воздуха зависит только от αКС (уровня теплового дросселирования камеры).

Для летательного аппарата с воздушно-реактивным двигателем с весом mg, летящего на режиме Kmax, при условии H=const и V=const, справедливо записать:

Отсюда имеем:

Анализ альтернативных аэродинамических компоновок при оптимизации облика практически всегда проводится для одной массы изделия (Cyoptl=Cyopt2) и для одинаковых условий полета Н=const, V=const, Cyopt=const. Исходя из этого, а также принимая J1≈J2, для двух конкурирующих аэродинамических обликов можно записать:

m1g=m2g

Таким образом, для каждой компоновки при Н=const, V=const, Cyopt=const:

Вывод: При условии Н=const, V=const, Cyopt=const из N конкурирующих аэродинамических обликов лучшим является аэродинамический облик с наибольшим значением интегрального критерия оптимизации KO=KO max, т.к. его αКС на крейсерском режиме полета будет выше αКСi i-того аэродинамического облика в раз при i=1~N.

Выбирают аэродинамический облик с наибольшим значением интегрального критерия оптимизации KO, принимают его за окончательный вариант аэродинамического облика.

Оптимизация по интегральному критерию KO позволяет отойти от общепринятой практики концептуального проектирования по частным взаимоисключающим критериям, и работать одновременно с основным набором главных проектных параметров. Способ определения аэродинамического облика летательного аппарата с воздушно-реактивным двигателем может быть реализован на современной промышленной базе и найти широкое применение в области проектирования летательных аппаратов.

Библиография

[1] Патент Китая № CN 104166764 от 08.02.2017, класс МПК G06F 17/50.

[2] «Проектирование самолетов», издание третье, переработанное и дополненное, под ред. д-ра техн. наук проф. С.М. Егера. Москва, «Машиностроение», 1983. - 616 с.

Похожие патенты RU2683017C1

название год авторы номер документа
ЛЕТАЮЩАЯ ЛАБОРАТОРИЯ 2022
  • Черкасов Александр Николаевич
  • Легконогих Денис Сергеевич
  • Зиненков Юрий Владимирович
  • Кондратюк Валерий Иванович
RU2785261C1
ВОЗДУХОЗАБОРНОЕ УСТРОЙСТВО ДВИГАТЕЛЬНОЙ УСТАНОВКИ ЛЕТАТЕЛЬНОГО АППАРАТА 2009
  • Юрконенко Алексей Николаевич
  • Фомичёв Александр Александрович
RU2446994C2
ЛЕТАТЕЛЬНЫЙ АППАРАТ С КОМБИНИРОВАННОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКОЙ 1998
  • Анакин А.Т.
  • Близнюк В.И.
  • Деменко Д.Г.
  • Игнатов А.И.
  • Казаков М.И.
  • Малышев В.В.
  • Тарасов А.И.
RU2130407C1
ЛЕТАТЕЛЬНЫЙ АППАРАТ СО СМЕШАННЫМ РЕЖИМОМ АЭРОДИНАМИЧЕСКОГО И КОСМИЧЕСКОГО ПОЛЕТА И СПОСОБ ЕГО ПИЛОТИРОВАНИЯ 2007
  • Шаваньяк Кристоф
  • Бертран Жером
  • Лапорт-Вейвада Хуг
  • Пулен Оливье
  • Матаран Филипп
  • Лэн Робер
RU2441815C2
СПОСОБ АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЙ МОДЕЛИ ЛЕТАТЕЛЬНОГО АППАРАТА И СТЕНД ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Субботин Виктор Владимирович
  • Терехин Владимир Алексеевич
  • Шевяков Владимир Иванович
  • Акинфиев Владимир Олегович
  • Третьяков Владимир Федорович
  • Носков Геннадий Павлович
  • Чевагин Александр Федорович
RU2421701C1
Способ и летательный аппарат для перемещения в атмосфере планет со скоростями выше первой космической и высокоинтегрированный гиперзвуковой летательный аппарат (варианты) для осуществления способа 2012
  • Александров Олег Александрович
RU2618831C2
Крыло летательного аппарата 2018
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Скоморохов Сергей Иванович
  • Чернышев Иван Леонидович
RU2693389C1
ЛЕТАТЕЛЬНЫЙ АППАРАТ 2007
  • Быковский Сергей Иванович
  • Павлов Виктор Андреевич
RU2378156C2
Многоцелевая сверхтяжелая транспортная технологическая авиационная платформа укороченного взлета и посадки 2019
  • Папиашвили Шота Георгиевич
  • Клочков Дмитрий Вячеславович
  • Ратников Кирилл Владимирович
RU2714176C1
МОТОГОНДОЛА ДВИГАТЕЛЯ НА КРЫЛЕ ЛЕТАТЕЛЬНОГО АППАРАТА 2015
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Ковалев Владимир Ефимович
  • Скоморохов Сергей Иванович
  • Чернышев Иван Леонидович
RU2614870C1

Реферат патента 2019 года СПОСОБ ОПРЕДЕЛЕНИЯ АЭРОДИНАМИЧЕСКОГО ОБЛИКА ЛЕТАТЕЛЬНОГО АППАРАТА С ВОЗДУШНО-РЕАКТИВНЫМ ДВИГАТЕЛЕМ

Изобретение относится к способам проектирования летательных аппаратов. Способ определения аэродинамического облика летательного аппарата с воздушно-реактивным двигателем состоит в том, что определяют базовый аэродинамический облик летательного аппарата, на основе базового аэродинамического облика летательного аппарата создают варианты аэродинамического облика, производят расчет аэродинамических характеристик для каждого из N вариантов аэродинамического облика, определяют интегральный критерий оптимизации для каждого варианта аэродинамического облика, выбирают вариант аэродинамического облика, для которого КO имеет максимальное значение; при этом GB - оптимальный расход воздуха, Cxopt - оптимальный коэффициент сопротивления. Изобретение направлено на оптимизацию процесса создания облика летательного аппарата за счет использования интегрального критерия - показателя КO для быстрой экспертной оценки конкурирующих компоновок.

Формула изобретения RU 2 683 017 C1

Способ определения аэродинамического облика летательного аппарата с воздушно-реактивным двигателем, при котором определяют базовый аэродинамический облик летательного аппарата, на основе базового аэродинамического облика летательного аппарата создают N>1 отличных друг от друга вариантов аэродинамического облика, производят расчет аэродинамических характеристик для каждого из N вариантов аэродинамического облика, отличающийся тем, что определяют интегральный критерий оптимизации для каждого варианта аэродинамического облика и выбирают вариант аэродинамического облика, для которого KO имеет максимальное значение, при этом GB - оптимальный расход воздуха двигателя, - оптимальный коэффициент сопротивления.

Документы, цитированные в отчете о поиске Патент 2019 года RU2683017C1

US 0008489373 B2, 16.07.2013
СПОСОБ ПОСТРОЕНИЯ ОПТИМАЛЬНОЙ АЭРОДИНАМИЧЕСКОЙ ПОВЕРХНОСТИ ГИПЕРЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2013
  • Галактионов Алексей Юрьевич
  • Лихачева Екатерина Сергеевна
RU2558498C2
Способ построения правильных криволинейных поверхностей фюзеляжа и других агрегатов самолета 1953
  • Китаинов Д.С.
SU98839A1
US 0007979255 B2, 12.07.2011.

RU 2 683 017 C1

Авторы

Юрконенко Алексей Николаевич

Даты

2019-03-25Публикация

2017-12-28Подача